scholarly journals Three-dimensional fan magnetic reconnection and particle acceleration in the solar corona

2006 ◽  
Vol 452 (3) ◽  
pp. 1069-1074 ◽  
Author(s):  
Y. E. Litvinenko
2021 ◽  
Vol 87 (6) ◽  
Author(s):  
D.L. Chesny ◽  
N.B. Orange ◽  
K.W. Hatfield

Particle acceleration via magnetic reconnection is a fundamental process in astrophysical plasmas. Experimental architectures are able to confirm a wide variety of particle dynamics following the two-dimensional Sweet–Parker model, but are limited in their reproduction of the fan-spine magnetic field topology about three-dimensional (3-D) null points. Specifically, there is not yet an experiment featuring driven 3-D torsional magnetic reconnection. To move in this direction, this paper expands on recent work toward the design of an experimental infrastructure for inducing 3-D torsional fan reconnection by predicting feasible particle acceleration profiles. Solutions to the steady-state, kinematic, resistive magnetohydrodynamic equations are used to numerically calculate particle trajectories from a localized resistivity profile using well-understood laboratory plasma parameters. We confine a thin, 10 eV helium sheath following the snowplough model into the region of this localized resistivity and find that it is accelerated to energies of ${\approx }2$ keV. This sheath is rapidly accelerated and focused along the spine axis propagating a few centimetres from the reconnection region. These dynamics suggest a novel architecture that may hold promise for future experiments studying solar coronal particle acceleration and for technology applications such as spacecraft propulsion.


2006 ◽  
Vol 2 (14) ◽  
pp. 98-98
Author(s):  
Silvia Dalla ◽  
Philippa K. Browning

AbstractMagnetic reconnection is a candidate mechanism for particle acceleration in a variety of astrophysical contexts. It is now widely accepted that reconnection plays a key role in solar flares, and reconstructions of coronal magnetic fields indicate that three-dimensional (3D) magnetic null points can be present during flares. We investigate particle acceleration during spine reconnection at a 3D magnetic null point, using a test particle numerical code. We observe efficient particle acceleration and find that two energetic populations are produced: a trapped population of particles that remain in the vicinity of the null, and an escaping population, which leave the configuration in two symmetric jets along field lines near the spine. While the parameters used in our simulation aim to represent solar coronal plasma conditions of relevance for acceleration in flares, the fact that the 3D spine reconnection configuration naturally results in energetic particle jets may be of importance in other astrophysical situations. We also compare the results obtained for the spine reconnection regime with those for the other possible mode of 3D reconnection, fan reconnection. We find that in the latter case energetic particle jets are not produced, though acceleration is observed.


2000 ◽  
Vol 105 (A3) ◽  
pp. 5529-5540 ◽  
Author(s):  
Ensang Lee ◽  
Kyoung-Wook Min ◽  
Jongho Seon ◽  
L. C. Lee ◽  
Dongsu Ryu

Sign in / Sign up

Export Citation Format

Share Document