scholarly journals The North Atlantic Coast Comprehensive Study and the US Army Corps of Engineers Sandy Recovery Program

2016 ◽  
Vol 7 ◽  
pp. 12002
Author(s):  
Roselle Henn ◽  
Joseph Vietri ◽  
David Leach
2017 ◽  
Vol 143 (5) ◽  
pp. 04017031 ◽  
Author(s):  
Mary A. Cialone ◽  
Alison S. Grzegorzewski ◽  
David J. Mark ◽  
Mary A. Bryant ◽  
Thomas C. Massey

2014 ◽  
Vol 41 (12) ◽  
pp. 4300-4307 ◽  
Author(s):  
Paige E. Newby ◽  
Bryan N. Shuman ◽  
Jeffrey P. Donnelly ◽  
Kristopher B. Karnauskas ◽  
Jeremiah Marsicek

1911 ◽  
Vol 11 (1) ◽  
pp. 1 ◽  
Author(s):  
Edwin M. Borchardt

1964 ◽  
Vol 1 (4) ◽  
pp. 215-226 ◽  
Author(s):  
W G Brown

Calculations using the Neumann solution (as modified by Aldrich) and thermal properties of soils (obtained by Kersten) show that the frost penetration depth for the same freezing index for essentially all soils with any moisture content and for dry sand and rock varies by a factor of about 2 to 1. The extremes calculated in this way bracket the experimentally determined design curve of the US Army Corps of Engineers and give it theoretical support. The theoretical calculations and additional experimental data are used as a basis for a small alteration in the slope of the design curve. This modified design curve is recommended for field use because of (1) inherent imperfections in existing theory and (2) practical limitations to precise specification of field conditions.


2021 ◽  
pp. 1-38
Author(s):  
Xi Guo ◽  
James P. Kossin ◽  
Zhe-Min Tan

AbstractTropical cyclone (TC) translation speed (TCTS) can affect the duration of TC-related disasters, which is critical to coastal and inland areas. The long-term variation of TCTS and their relationship to the variability of the mid-latitude jet stream and storm migration are discussed here for storms near the North Atlantic coast during 1948-2019. Our results reveal the prominent seasonality in the long-term variation of TCTS, which can be largely explained by the seasonality in the covariations of the mid-latitude jet stream and storm locations. Specifically, significant increases of TCTS occur in June and October during the past decades, which may result from the equatorward displacement of the jet stream and poleward migration of storm locations. Prominent slowdown of TCTS is found in August, which is related to the weakened jet strength and equatorward storm migration. In September, the effects of poleward displacement and weakening of the jet stream on TCTS are largely compensated by the poleward storm migration, therefore, no significant change in TCTS is observed. Meanwhile, the multidecadal variability of the Atlantic may contribute to the multidecadal variability of TCTS. Our findings emphasize the significance in taking a seasonality view in discussing the variability and trends of near-coast Atlantic TCTS under climate change.


Sign in / Sign up

Export Citation Format

Share Document