Application of the Nearshore Wave Model STWAVE to the North Atlantic Coast Comprehensive Study

2017 ◽  
Vol 143 (5) ◽  
pp. 04017026 ◽  
Author(s):  
Mary A. Bryant ◽  
Robert E. Jensen
2017 ◽  
Vol 143 (5) ◽  
pp. 04017031 ◽  
Author(s):  
Mary A. Cialone ◽  
Alison S. Grzegorzewski ◽  
David J. Mark ◽  
Mary A. Bryant ◽  
Thomas C. Massey

2014 ◽  
Vol 41 (12) ◽  
pp. 4300-4307 ◽  
Author(s):  
Paige E. Newby ◽  
Bryan N. Shuman ◽  
Jeffrey P. Donnelly ◽  
Kristopher B. Karnauskas ◽  
Jeremiah Marsicek

1911 ◽  
Vol 11 (1) ◽  
pp. 1 ◽  
Author(s):  
Edwin M. Borchardt

2021 ◽  
pp. 1-38
Author(s):  
Xi Guo ◽  
James P. Kossin ◽  
Zhe-Min Tan

AbstractTropical cyclone (TC) translation speed (TCTS) can affect the duration of TC-related disasters, which is critical to coastal and inland areas. The long-term variation of TCTS and their relationship to the variability of the mid-latitude jet stream and storm migration are discussed here for storms near the North Atlantic coast during 1948-2019. Our results reveal the prominent seasonality in the long-term variation of TCTS, which can be largely explained by the seasonality in the covariations of the mid-latitude jet stream and storm locations. Specifically, significant increases of TCTS occur in June and October during the past decades, which may result from the equatorward displacement of the jet stream and poleward migration of storm locations. Prominent slowdown of TCTS is found in August, which is related to the weakened jet strength and equatorward storm migration. In September, the effects of poleward displacement and weakening of the jet stream on TCTS are largely compensated by the poleward storm migration, therefore, no significant change in TCTS is observed. Meanwhile, the multidecadal variability of the Atlantic may contribute to the multidecadal variability of TCTS. Our findings emphasize the significance in taking a seasonality view in discussing the variability and trends of near-coast Atlantic TCTS under climate change.


Author(s):  
Vengatesan Venugopal ◽  
Arne Vögler

Abstract This paper presents the nature of turbulence parameters produced from 3-dimensional numerical simulations using an ocean scale wave-tidal current model applied to tidal energy sites in the Orkney waters in the United Kingdom. The MIKE 21/3 coupled wave-current model is chosen for this study. The numerical modelling study is conducted in two stages. First, a North Atlantic Ocean large-scale wave model is employed to simulate wave parameters. Spatial and temporal wind speeds extracted from the European Centre for Medium Range Weather Forecast (ECMWF) is utilised to drive the North Atlantic wave model. Secondly, the wave parameters produced from the North Atlantic model are used as boundary conditions to run a coupled wave-tidal current model. A turbulence model representing the turbulence and eddy viscosity within the coupled model is chosen and the turbulence kinetic energy (TKE) due to wave-current interactions are computed. The coupled model is calibrated with Acoustic Doppler and Current Profiler (ADCP) measurements deployed close to a tidal energy site in the Inner Sound of the Pentland Firth. The model output parameters such as the current speed, TKE, horizontal and vertical eddy viscosities, significant wave height, peak wave period and wave directions are presented, and, their characteristics are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document