translation speed
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 77)

H-INDEX

31
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Hooman Ayat ◽  
Jason P. Evans ◽  
Steven C. Sherwood ◽  
Joshua Soderholm

Abstract The climate is warming and this is changing some aspects of storms, but we have relatively little knowledge of storm characteristics beyond intensity, which limits our understanding of storms overall. In this study, we apply a cell-tracking algorithm to 20 years of radar data at a mid-latitude coastal-site (Sydney, Australia), to establish a regional precipitation system climatology. The results show that extreme storms in terms of translation-speed, size and rainfall intensity usually occur in the warm season, and are slower and more intense over land between ~10am and ~8pm (AEST), peaking in the afternoon. Precipitation systems are more frequent in the cold season and often initiate over the ocean and move northward, leading to precipitation mostly over the ocean. Using clustering algorithms, we have found five precipitation system types with distinct properties, occurring throughout the year but peaking in different seasons. While overall rainfall statistics don't show any link to climate modes, links do appear for some system types using a multivariate approach. This climatology for a variety of precipitation system characteristics will allow future study of any changes in these characteristics due to climate change.


2021 ◽  
Author(s):  
Qirun Wang ◽  
Jie Lin

An approximately linear relationship between the fraction of ribosomal proteins in the proteome (ϕR) and the growth rate (μ) holds in proliferating cells when the nutrient quality changes, often referred to as a growth law. While a simple model assuming a constant translation speed of ribosomes without protein degradation can rationalize this growth law, real protein synthesis processes are more complex. This work proposes a general theoretical framework of protein synthesis, taking account of heterogeneous translation speeds among proteins and finite protein degradation. We introduce ribosome allocations as the fraction of active ribosomes producing certain proteins, with two correlation coefficients respectively quantifying the correlation between translation speeds and ribosome allocations, and between protein degradation rates and mass fractions. We prove that the growth law curve generally follows ϕR = (μ + c1)/(c2μ + c3) where c1, c2, and c3 are constants depending on the above correlation coefficients and the translation speed of ribosomal proteins. Our theoretical predictions of ϕR agree with existing data of Saccharomyces cerevisiae. We demonstrate that when different environments share similar correlation coefficients, the growth law curve is universal and up-bent relative to a linear line in slow-growth conditions, which appears valid for Escherichia coli. However, the growth law curve is non-universal and environmental-specific when the environments have significantly different correlation coefficients. Our theories allow us to estimate the translation speeds of ribosomal and non-ribosomal proteins based on the experimental growth law curves.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2144
Author(s):  
Jihye Ryu ◽  
Chaeyoung Lee

We investigated the extent of the heritability underestimation for molecules from an infinitesimal model in mixed model analysis. To this end, we estimated the heritability of transcription, ribosome occupancy, and translation in lymphoblastoid cell lines from Yoruba individuals. Upon considering all genome-wide nucleotide variants, a considerable underestimation in heritability was observed for mRNA transcription (−0.52), ribosome occupancy (−0.48), and protein abundance (−0.47). We employed a mixed model with an optimal number of nucleotide variants, which maximized heritability, and identified two novel expression quantitative trait loci (eQTLs; p < 1.0 × 10−5): rs11016815 on chromosome 10 that influences the transcription of SCP2, a trans-eGene on chromosome 1—whose expression increases in response to MGMT downregulation-induced apoptosis, the cis-eGene of rs11016815—and rs1041872 on chromosome 11 that influences the ribosome occupancy of CCDC25 on chromosome 8 and whose cis-eGene encodes ZNF215, a transcription factor that potentially regulates the translation speed of CCDC25. Our results suggest that an optimal number of nucleotide variants should be used in a mixed model analysis to accurately estimate heritability and identify eQTLs. Moreover, a heterogeneous covariance structure based on gene identity and the molecular layers of the gene expression process should be constructed to better explain polygenic effects and reduce errors in identifying eQTLs.


MAUSAM ◽  
2021 ◽  
Vol 48 (3) ◽  
pp. 421-428
Author(s):  
D.S. DESAI ◽  
B. D. WAIKAR

ABSTRACT. Translation speed and place of recurvature of cyclonic storms during 25 years period 1970-94 are studied. This will help forecasters to predict exact landfall of cyclonic storm.      


2021 ◽  
Vol 15 (3) ◽  
pp. 469-483
Author(s):  
Michel Dos Santos Moura ◽  
Aldir Carpes ◽  
Guinther Hugo Grudtner ◽  
Kléber Pereira Lanças

The base cut of cultures is one of the most studied parameters, and the variables involved in this process should be better evaluated under controlled conditions. The aim of this study was to evaluate, using an electromechanical device, under controlled conditions, the influence of the cutting angle and the machine's translation speed on the impact force generated on sugarcane stalks in mechanized harvesting. The study was carried out at the Nempa - Center for Testing of Agroforestry Machines and Tires (NEMPA) at UNESP/Botucatu. For the tests, the Sugarcane Basal Cut Testing Device (BCTD) was used. The collected data were evaluated using multiple linear regression analysis, using the stepwise method. The results showed that the angulation of the cutting blades is the most significant variable in relation to the impact force generated in the cutting process of sugarcane stalks, this research also managed to assess that the intensity of the angulation effect is more than 2 times greater than the effect generated by the displacement speed in the mechanized harvesting process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuai Wang ◽  
Ralf Toumi

AbstractIt has been challenging to detect trends of tropical cyclone (TC) properties due to temporal heterogeneities and short duration of the direct observations. TCs impact the ocean surface temperature by creating cold wakes as a “fingerprint”. Here we infer changes of the lifetime maximum intensity (LMI), size and integrated kinetic energy from the cold wakes for the period 1982–2019. We find a globally enhanced local cold wake amplitude 3 days after the LMI of − 0.12 ± 0.04 °C per decade whereas the cold wake size does not show any significant change. Multivariate regression models based on the observed ocean cooling, the TC translation speed and the ocean mixed layer depth are applied to infer LMI and TC size. The inferred annual mean global LMI has increased by 1.0 ± 0.7 m s−1 per decade. This inferred trend is between that found for two directly observed data sets. However, the TC size and the TC destructive potential measured by the integrated kinetic energy, have not altered significantly. This analysis provides new independent and indirect evidence of recent TC LMI increases, but a stable size and integrated kinetic energy.


2021 ◽  
Vol 2 (4) ◽  
pp. 1051-1072
Author(s):  
Anantha Aiyyer ◽  
Terrell Wade

Abstract. It is well known that rapid changes in tropical-cyclone motion occur during interaction with extratropical waves. While the translation speed has received much attention in the published literature, acceleration has not. Using a large data sample of Atlantic tropical cyclones, we formally examine the composite synoptic-scale patterns associated with tangential and curvature components of their acceleration. During periods of rapid tangential acceleration, the composite tropical cyclone moves poleward between an upstream trough and downstream ridge of a developing extratropical wave packet. The two systems subsequently merge in a manner that is consistent with extratropical transition. During rapid curvature acceleration, a prominent downstream ridge promotes recurvature of the tropical cyclone. In contrast, during rapid tangential deceleration or near-zero curvature acceleration, a ridge is located directly poleward of the tropical cyclone. Locally, this arrangement takes the form of a cyclone–anticyclone vortex pair. On average, the tangential acceleration peaks 18 h prior to extratropical transition, while the curvature acceleration peaks at recurvature. These findings confirm that rapid acceleration of tropical cyclones is mediated by interaction with extratropical baroclinic waves. Furthermore, the tails of the distribution of acceleration and translation speed show a robust reduction over the past 5 decades. We speculate that these trends may reflect the poleward shift and weakening of extratropical Rossby waves.


2021 ◽  
Author(s):  
Tess E. Brewer ◽  
Andreas Wagner

AbstractRapid bacterial growth depends on the speed at which ribosomes can translate mRNA into proteins. mRNAs that encode successive stretches of proline can cause ribosomes to stall, substantially reducing translation speed. Such stalling is especially detrimental for species that must grow and divide rapidly. Here we focus on di-prolyl motifs (XXPPX) and ask whether their incidence varies with growth rate. To find out we conducted a broad survey of such motifs in >3000 bacterial genomes across 36 phyla. Indeed, fast-growing species encode fewer motifs than slow-growing species, especially in highly expressed proteins. We also found many di-prolyl motifs within thermophiles, where prolines can help maintain proteome stability. Moreover, bacteria with complex, multicellular lifecycles also encode many di-prolyl motifs. This is especially evident in the slow-growing phylum Myxococcota. Bacteria in this phylum encode many serine-threonine kinases, and many di-prolyl motifs at potential phosphorylation sites within these kinases. Serine-threonine kinases are involved in cell signaling and help regulate developmental processes linked to multicellularity in the Myxococcota. Altogether, our observations suggest that weakened selection on translational rate, whether due to slow or thermophilic growth, may allow di-prolyl motifs to take on new roles in biological processes that are unrelated to translational rate.


2021 ◽  
Vol 118 (41) ◽  
pp. e2105636118
Author(s):  
Justin T. Maxwell ◽  
Joshua C. Bregy ◽  
Scott M. Robeson ◽  
Paul A. Knapp ◽  
Peter T. Soulé ◽  
...  

The impacts of inland flooding caused by tropical cyclones (TCs), including loss of life, infrastructure disruption, and alteration of natural landscapes, have increased over recent decades. While these impacts are well documented, changes in TC precipitation extremes—the proximate cause of such inland flooding—have been more difficult to detect. Here, we present a latewood tree-ring–based record of seasonal (June 1 through October 15) TC precipitation sums (ΣTCP) from the region in North America that receives the most ΣTCP: coastal North and South Carolina. Our 319-y-long ΣTCP reconstruction reveals that ΣTCP extremes (≥0.95 quantile) have increased by 2 to 4 mm/decade since 1700 CE, with most of the increase occurring in the last 60 y. Consistent with the hypothesis that TCs are moving slower under anthropogenic climate change, we show that seasonal ΣTCP along the US East Coast are positively related to seasonal average TC duration and TC translation speed.


2021 ◽  
Vol 13 (18) ◽  
pp. 3781
Author(s):  
Zheng Ling ◽  
Zhifeng Chen ◽  
Guihua Wang ◽  
Hailun He ◽  
Changlin Chen

Based on the satellite observed sea surface temperature (SST), the recovery of SST cooling induced by the tropical cyclones (TCs) over the northwestern Pacific Ocean is investigated. The results show that the passage of a TC induces a mean maximum cooling in the SST of roughly −1.25 °C. It was also found that most of this cooling (~87%) is typically erased within 30 days of TC passage. This recovery time depends upon the degree of cooling, with stronger (weaker) SST cooling corresponding to longer (shorter) recovery time. Further analyses show that the mixed layer depth (MLD) and the upper layer thermocline temperature gradient (UTTG) also play an important role in the SST response to TCs. The maximum cooling increases ~0.1 °C for every 7 m decrease in the MLD or every 0.04 °C/m increase in the UTTG. The combined effects of MLD and TC intensity and translation speed on the SST response are also discussed.


Sign in / Sign up

Export Citation Format

Share Document