scholarly journals Experimental evaluation of passive cooling using phase change materials (PCM) for reducing overheating in public building

2018 ◽  
Vol 32 ◽  
pp. 01001
Author(s):  
Abdullahi Ahmed ◽  
Monica Mateo-Garcia ◽  
Danny McGough ◽  
Kassim Caratella ◽  
Zafer Ure

Indoor Environmental Quality (IEQ) is essential for the health and productivity of building users. The risk of overheating in buildings is increasing due to increased density of occupancy of people and heat emitting equipment, increase in ambient temperature due to manifestation of climate change or changes in urban micro-climate. One of the solutions to building overheating is to inject some exposed thermal mass into the interior of the building. There are many different types of thermal storage materials which typically includes sensible heat storage materials such as concrete, bricks, rocks etc. It is very difficult to increase the thermal mass of existing buildings using these sensible heat storage materials. Alternative to these, there are latent heat storage materials called Phase Change Materials (PCM), which have high thermal storage capacity per unit volume of materials making them easy to implement within retrofit project. The use of Passive Cooling Thermal Energy Storage (TES) systems in the form of PCM PlusICE Solutions has been investigated in occupied spaces to improve indoor environmental quality. The work has been carried out using experimental set-up in existing spaces and monitored through the summer the months. The rooms have been monitored using wireless temperature and humidity sensors. There appears to be significant improvement in indoor temperature of up to 5°K in the room with the PCM compared to the monitored control spaces. The success of PCM for passive cooling is strongly dependent on the ventilation strategy employed in the spaces. The use of night time cooling to purge the stored thermal energy is essential for improved efficacy of the systems to reduce overheating in the spaces. The investigation is carried within the EU funded RESEEPEE project.

Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 241
Author(s):  
Raul-Augustin Mitran ◽  
Simona Ioniţǎ ◽  
Daniel Lincu ◽  
Daniela Berger ◽  
Cristian Matei

Phase change materials (PCMs) can store thermal energy as latent heat through phase transitions. PCMs using the solid-liquid phase transition offer high 100–300 J g−1 enthalpy at constant temperature. However, pure compounds suffer from leakage, incongruent melting and crystallization, phase separation, and supercooling, which limit their heat storage capacity and reliability during multiple heating-cooling cycles. An appropriate approach to mitigating these drawbacks is the construction of composites as shape-stabilized phase change materials which retain their macroscopic solid shape even at temperatures above the melting point of the active heat storage compound. Shape-stabilized materials can be obtained by PCMs impregnation into porous matrices. Porous silica nanomaterials are promising matrices due to their high porosity and adsorption capacity, chemical and thermal stability and possibility of changing their structure through chemical synthesis. This review offers a first in-depth look at the various methods for obtaining composite PCMs using porous silica nanomaterials, their properties, and applications. The synthesis and properties of porous silica composites are presented based on the main classes of compounds which can act as heat storage materials (paraffins, fatty acids, polymers, small organic molecules, hydrated salts, molten salts and metals). The physico-chemical phenomena arising from the nanoconfinement of phase change materials into the silica pores are discussed from both theoretical and practical standpoints. The lessons learned so far in designing efficient composite PCMs using porous silica matrices are presented, as well as the future perspectives on improving the heat storage materials.


2020 ◽  
Vol 22 (8) ◽  
pp. 4617-4625 ◽  
Author(s):  
Julianne E. Bird ◽  
Terry D. Humphries ◽  
Mark Paskevicius ◽  
Lucas Poupin ◽  
Craig E. Buckley

The thermal transport properties of potential thermal energy storage materials have been measured using identical conditions enabling direct comparison.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Amir Al-Ahmed ◽  
Ahmet Sarı ◽  
Mohammad Abu Jafar Mazumder ◽  
Gökhan Hekimoğlu ◽  
Fahad A. Al-Sulaiman ◽  
...  

ACS Omega ◽  
2020 ◽  
Vol 5 (30) ◽  
pp. 19236-19246
Author(s):  
Jianxun Liu ◽  
Zhongchen Chang ◽  
Lianbo Wang ◽  
Jingwen Xu ◽  
Rao Kuang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document