scholarly journals Sustainable Innovation System Using Process Of Bagasse Become Sodium Lignosulfonate Surfactant For Enhanced Oil Recovery

2018 ◽  
Vol 43 ◽  
pp. 01026
Author(s):  
Rini Setiati ◽  
Septoratno Siregar ◽  
Taufan Marhaendrajana ◽  
Deana Wahyuningrum

The purpose of this research is to get new product innovation process from bagasse, that is Sodium LignoSulfonate surfactant. Lignosulfonates surfactants in petroleum engineering are used as injection fluids into oil reservoirs to increase oil recovery, which is known as Enhanced Oil Recovery process. Lignosulfonates is made of lignin as raw material, which can be extracted from bagasse as one of its sources. Bagasse contains 24 - 25% lignin, so it is sufficient to be processed into lignosulfonates. Today, bagasse is one of the biomass resources widely used as a boiler fuel in sugar factory, source of animal feed, material for paper, cement and brick reinforcement .This study presents an innovation of bagasse utilization. This innovation involves two scientific application fields, firstly, chemistry in the processing of bagasse into sodium lignosulfonates surfactant and secondly, petroleum engineering in the effort of using sodium lignosulfonates surfactant to increase oil production from the reservoir. The last stage in this process is injection of the sodium lignosulfonates surfactant into a synthetic core in laboratory scale use water and surfactant injection.. The amount of oil that is produced from the injected core shows the increase in oil yield from the sodium lignosulfonates surfactant injection.

2021 ◽  
Author(s):  
Rini Setiati ◽  
Aqlyna Fatahanissa ◽  
Shabrina Sri Riswati ◽  
Septoratno Siregar ◽  
Deana Wahyuningrum

Anionic surfactants are generally used in surfactant injections because they are good, resistant in storage and stable. Furthermore, Commercially, anions are produced in the form of carboxylates, sulfates, sulfonates, phosphates, or phosphonates. The surfactants used in the process of implementing Enhanced Oil Recovery (EOR) are generally petroleum-based, such as Petroleum Sulfonate. Therefore, an increase in oil price, leads to an increase in the price of surfactant and the operational costs becomes relatively expensive. Lignosulfonate is a type of anionic surfactant which is made with lignin as raw material. This lignin is found in many plants, including wood stalks, plant leaves, peanut shells, corn cobs, bagasse, empty bunches of oil palm and wheat straw. Based on the results of previous studies, 25% of lignin component was discovered in bagasse. This may be a consideration that there is enough lignin in bagasse to be used as raw material in the production of lignosulfonate vegetable surfactants. Furthermore, lignin from bagasse is used because bagasse is easy to obtain, cheap and an environmental friendly vegetable waste. Currently, bagasse is only used as fuel in steam boilers and papermaking, cement and brick reinforcement, a source of animal feed, bioethanol, activated charcoal as adsorbent and compost fertilizer. This is a consideration to optimize the use of bagasse to become lignosulfonate as an alternative for surfactants in the petroleum sector. The purpose of this study is to show that lignin from bagasse has the potential of becoming a lignosulfonate surfactant. There are several studies that have processed bagasse into sodium lignosulfonate. The component test on the results showed that the surfactant component of sodium lignosulfonate from bagasse was almost the same as the commercial standard lignosulfonate component. Furthermore, the results of the HLB (Hydrophilic–Lipophilic Balance) value test show that the sodium lignosulfonate surfactant from bagasse can function as an emulsion form which is a required parameter for the surfactant injection mechanism. Based on the discussion of the study results, bagasse has the potential as a raw material to be processed into lignosulfonates.


2021 ◽  
Vol 1053 (1) ◽  
pp. 012068
Author(s):  
Teodora Dasilva ◽  
Ronny Windu Sudrajat ◽  
Mega Kasmiyatun ◽  
Slamet Priyanto ◽  
Suherman ◽  
...  

2021 ◽  
Author(s):  
Rini Setiati ◽  
Muhammad Taufiq Fathaddin ◽  
Aqlyna Fatahanissa

Microemulsion is the main parameter that determines the performance of a surfactant injection system. According to Myers, there are four main mechanisms in the enhanced oil recovery (EOR) surfactant injection process, namely interface tension between oil and surfactant, emulsification, decreased interfacial tension and wettability. In the EOR process, the three-phase regions can be classified as type I, upper-phase emulsion, type II, lower-phase emulsion and type III, middle-phase microemulsion. In the middle-phase emulsion, some of the surfactant grains blend with part of the oil phase so that the interfacial tension in the area is reduced. The decrease in interface tension results in the oil being more mobile to produce. Thus, microemulsion is an important parameter in the enhanced oil recovery process.


Sign in / Sign up

Export Citation Format

Share Document