scholarly journals Energy efficiency of cogeneration utilization of residual heat of flue gases during the drying of coal concentrate in pipe-dryers

2019 ◽  
Vol 109 ◽  
pp. 00065
Author(s):  
Yurii Oksen ◽  
Maksym Radiuk ◽  
Yurii Komissarov ◽  
Mykhailo Kirsanov

The possibility of increasing the efficiency of drying coal concentrate unit on the basis of pipe-dryers has been investigated by converting the heat of flue gases outlet into electrical energy and the heat potential of hot water supply system with a heat power generation unit operating on low-boiling working fluids. A method and an algorithm for calculating the thermal mode of the unit under the conditions of specified limitations on temperature pressures in heat exchangers have been developed. On the basis of mathematical modeling of thermal conditions, it has been found that under the conditions of PD-11 pipe-dryers, when the heat power generation unit operates with butane-pentane mixture, 204 kW of electricity can be generated with the condensation cycle, and 1780 kW of heat and 65 kW of electric energy can be generated with the heating cycle.

2016 ◽  
Author(s):  
Harrison Warren ◽  
Alta Knizley ◽  
Pedro J. Mago

Combined heat and power (CHP) systems simultaneously generate on-site electricity and provide useful heat by utilizing waste heat from a power generation unit (PGU). CHP systems can enhance energy production efficiency and energy sustainability by reducing grid dependency, often yielding cost savings in the process. Furthermore, CHP systems can provide savings over conventional systems in terms of operational cost, primary energy consumption (PEC), and carbon dioxide emissions (CDE). Typical CHP systems generate onsite power using a PGU, and the waste heat from the PGU is used to provide heating or hot water to the facility. Another variation for this system is to incorporate an organic Rankine cycle (ORC) to allow for increased potential reductions in operational cost, PEC, and CDE when compared to separate heat and power. This paper evaluates the effect of using electric energy storage on the performance of a PGU-ORC system. In the proposed system, the waste heat from a PGU is used to generate and to store electricity using an ORC coupled with electric energy storage (ES) (battery). Then, the electricity that is stored in the batteries could be used during the system operation at different times of the day so the PGU does not have to operate all the time. The PGU-ORC-ES system (with battery storage) is compared with a conventional system in terms of operational cost, PEC, and CDE. A restaurant building located in Chicago, IL is used to evaluate the potential of the proposed PGU-ORC-ES system. Results indicate that the addition of electric energy storage is beneficial to the proposed PGU-ORC system in terms of operational cost, PEC, and CDE. Furthermore, the effect of the size of the electric energy storage on the system performance is analyzed in this paper.


Author(s):  
Anna K. Hueffed ◽  
Pedro J. Mago ◽  
Louay M. Chamra

Combined cooling, heating, and power (CCHP) systems generate electricity at or near the place of consumption and utilize the accompanying waste heat to satisfy the building’s thermal demand. CCHP systems have often been cited as advantageous alternatives to traditional methods of power generation and one of the critical components affecting their performance is the power generation unit (PGU). This investigation examines the effect of the PGU on the energy, economical, and environmental performance of CCHP systems. Different size PGUs are simulated under the following operational strategies: follow the building’s electric load, follow the building’s thermal load, and operate at constant load. An internal combustion engine is used as the PGU in the CCHP system to meet hourly electric, cooling, heating, and hot water loads of a typical office building for a year. Annual operational cost, primary energy consumption (PEC), and carbon dioxide emissions (CDE) are found for two cities and compared to a conventional building. Finally, a simple optimization is performed to determine the best engine load for each hour during the simulation. Among the results, the smallest engine generally yielded the lowest costs and lowest PEC; but, no such trend was found with regards to CDE.


2018 ◽  
Vol 51 (28) ◽  
pp. 696-701 ◽  
Author(s):  
Mingjuan Zhu ◽  
Jiong Shen ◽  
Kwang Y. Lee ◽  
Xiao Wu

2014 ◽  
Vol 161 (14) ◽  
pp. F1348-F1353 ◽  
Author(s):  
Yuqing Wang ◽  
Yixiang Shi ◽  
Xiankai Yu ◽  
Ningsheng Cai ◽  
Jiqing Qian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document