Performance enhancement of a power generation unit–organic Rankine cycle system through the addition of electric energy storage

2017 ◽  
Vol 10 ◽  
pp. 28-38 ◽  
Author(s):  
Harrison Warren ◽  
Pedro J. Mago ◽  
Alta Knizley ◽  
Rogelio Luck
2016 ◽  
Author(s):  
Harrison Warren ◽  
Alta Knizley ◽  
Pedro J. Mago

Combined heat and power (CHP) systems simultaneously generate on-site electricity and provide useful heat by utilizing waste heat from a power generation unit (PGU). CHP systems can enhance energy production efficiency and energy sustainability by reducing grid dependency, often yielding cost savings in the process. Furthermore, CHP systems can provide savings over conventional systems in terms of operational cost, primary energy consumption (PEC), and carbon dioxide emissions (CDE). Typical CHP systems generate onsite power using a PGU, and the waste heat from the PGU is used to provide heating or hot water to the facility. Another variation for this system is to incorporate an organic Rankine cycle (ORC) to allow for increased potential reductions in operational cost, PEC, and CDE when compared to separate heat and power. This paper evaluates the effect of using electric energy storage on the performance of a PGU-ORC system. In the proposed system, the waste heat from a PGU is used to generate and to store electricity using an ORC coupled with electric energy storage (ES) (battery). Then, the electricity that is stored in the batteries could be used during the system operation at different times of the day so the PGU does not have to operate all the time. The PGU-ORC-ES system (with battery storage) is compared with a conventional system in terms of operational cost, PEC, and CDE. A restaurant building located in Chicago, IL is used to evaluate the potential of the proposed PGU-ORC-ES system. Results indicate that the addition of electric energy storage is beneficial to the proposed PGU-ORC system in terms of operational cost, PEC, and CDE. Furthermore, the effect of the size of the electric energy storage on the system performance is analyzed in this paper.


2016 ◽  
Vol 37 (3) ◽  
pp. 79-93 ◽  
Author(s):  
Jan Wajs ◽  
Dariusz Mikielewicz ◽  
Michał Bajor ◽  
Zbigniew Kneba

AbstractThe results of investigations conducted on the prototype of vapour driven micro-CHP unit integrated with a gas boiler are presented. The system enables cogeneration of heat and electric energy to cover the energy demand of a household. The idea of such system is to produce electricity for own demand or for selling it to the electric grid – in such situation the system user will became the prosumer. A typical commercial gas boiler, additionally equipped with an organic Rankine cycle (ORC) module based on environmentally acceptable working fluid can be regarded as future generation unit. In the paper the prototype of innovative domestic cogenerative ORC system, consisting of a conventional gas boiler and a small size axial vapour microturbines (in-house designed for ORC and the commercially available for Rankine cycle (RC)), evaporator and condenser were scrutinised. In the course of study the fluid working temperatures, rates of heat, electricity generation and efficiency of the whole system were obtained. The tested system could produce electricity in the amount of 1 kWe. Some preliminary tests were started with water as working fluid and the results for that case are also presented. The investigations showed that domestic gas boiler was able to provide the saturated/superheated ethanol vapour (in the ORC system) and steam (in the RC system) as working fluids.


2019 ◽  
Vol 109 ◽  
pp. 00065
Author(s):  
Yurii Oksen ◽  
Maksym Radiuk ◽  
Yurii Komissarov ◽  
Mykhailo Kirsanov

The possibility of increasing the efficiency of drying coal concentrate unit on the basis of pipe-dryers has been investigated by converting the heat of flue gases outlet into electrical energy and the heat potential of hot water supply system with a heat power generation unit operating on low-boiling working fluids. A method and an algorithm for calculating the thermal mode of the unit under the conditions of specified limitations on temperature pressures in heat exchangers have been developed. On the basis of mathematical modeling of thermal conditions, it has been found that under the conditions of PD-11 pipe-dryers, when the heat power generation unit operates with butane-pentane mixture, 204 kW of electricity can be generated with the condensation cycle, and 1780 kW of heat and 65 kW of electric energy can be generated with the heating cycle.


2015 ◽  
Vol 22 (9) ◽  
pp. 3641-3649 ◽  
Author(s):  
Jia-ling Zhu ◽  
Hua-yu Bo ◽  
Tai-lu Li ◽  
Kai-yong Hu ◽  
Ke-tao Liu

2021 ◽  
Author(s):  
Bipul Krishna Saha ◽  
Basab Chakraborty ◽  
Rohan Dutta

Abstract Industrial low-grade waste heat is lost, wasted and deposited in the atmosphere and is not put to any practical use. Different technologies are available to enable waste heat recovery, which can enhance system energy efficiency and reduce total energy consumption. Power plants are energy-intensive plants with low-grade waste heat. In the case of such plants, recovery of low-grade waste heat is gaining considerable interest. However, in such plants, power generation often varies based on market demand. Such variations may adversely influence any recovery system's performance and the economy, including the Organic Rankine Cycle (ORC). ORC technologies coupled with Cryogenic Energy Storage (CES) may be used for power generation by utilizing the waste heat from such power plants. The heat of compression in a CES may be stored in thermal energy storage systems and utilized in ORC or Regenerative ORC (RORC) for power generation during the system's discharge cycle. This may compensate for the variation of the waste heat from the power plant, and thereby, the ORC system may always work under-designed capacity. This paper presents the thermo-economic analysis of such an ORC system. In the analysis, a steady-state simulation of the ORC system has been developed in a commercial process simulator after validating the results with experimental data for a typical coke-oven plant. Forty-nine different working fluids were evaluated for power generation parameters, first law efficiencies, purchase equipment cost, and fixed investment payback period to identify the best working fluid.


Sign in / Sign up

Export Citation Format

Share Document