scholarly journals Research on Microgrid Optimization Based on Simulated Annealing Particle Swarm Optimization

2019 ◽  
Vol 118 ◽  
pp. 01038
Author(s):  
Shuyi Li ◽  
Xifeng Zhou ◽  
Qiangang Guo

Based on the pursuit of different goals in the operation of the microgrid, it is not possible to meet the lowest cost and the least pollution at the same time. From the perspective of economy and environmental protection, a microgrid model including photovoltaic power generation, wind power generation, micro gas turbine, fuel cell and energy storage device is proposed. This paper establishes a comprehensive benefit objective function that considers both microgrid fuel cost, maintenance management cost, depreciation cost, interaction cost with public grid and pollutant treatment cost. In order to avoid the defect that the traditional particle swarm optimization algorithm is easy to fall into the local optimal solution, this paper uses the combination of simulated annealing algorithm and particle swarm optimization algorithm to compare with the traditional particle swarm optimization algorithm to obtain a more suitable method for microgrid operation. Finally, a typical microgrid in China is taken as an example to verify the feasibility of the algorithm.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Wang ◽  
Yongqiang Liu

The strengths and weaknesses of correlation algorithm, simulated annealing algorithm, and particle swarm optimization algorithm are studied in this paper. A hybrid optimization algorithm is proposed by drawing upon the three algorithms, and the specific application processes are given. To extract the current fundamental signal, the correlation algorithm is used. To identify the motor dynamic parameter, the filtered stator current signal is simulated using simulated annealing particle swarm algorithm. The simulated annealing particle swarm optimization algorithm effectively incorporates the global optimization ability of simulated annealing algorithm with the fast convergence of particle swarm optimization by comparing the identification results of asynchronous motor with constant torque load and step load.


2016 ◽  
Vol 11 (1) ◽  
pp. 58-67 ◽  
Author(s):  
S Sarathambekai ◽  
K Umamaheswari

Discrete particle swarm optimization is one of the most recently developed population-based meta-heuristic optimization algorithm in swarm intelligence that can be used in any discrete optimization problems. This article presents a discrete particle swarm optimization algorithm to efficiently schedule the tasks in the heterogeneous multiprocessor systems. All the optimization algorithms share a common algorithmic step, namely population initialization. It plays a significant role because it can affect the convergence speed and also the quality of the final solution. The random initialization is the most commonly used method in majority of the evolutionary algorithms to generate solutions in the initial population. The initial good quality solutions can facilitate the algorithm to locate the optimal solution or else it may prevent the algorithm from finding the optimal solution. Intelligence should be incorporated to generate the initial population in order to avoid the premature convergence. This article presents a discrete particle swarm optimization algorithm, which incorporates opposition-based technique to generate initial population and greedy algorithm to balance the load of the processors. Make span, flow time, and reliability cost are three different measures used to evaluate the efficiency of the proposed discrete particle swarm optimization algorithm for scheduling independent tasks in distributed systems. Computational simulations are done based on a set of benchmark instances to assess the performance of the proposed algorithm.


2014 ◽  
Vol 651-653 ◽  
pp. 2159-2163
Author(s):  
Jia Xing You ◽  
Ji Li Chen ◽  
Ming Gang Dong

To solve the problem of standard particle swarm optimization (PSO) easy turn to premature convergence and poor ability in local search, this paper present a hybrid particle swarm optimization algorithm merging simulated annealing (SA) and mountain-climb. During the running time, the algorithm use the pso to find the global optimal position quickly, take advantage of the Gaussian mutation and mountain-climb strategy to enhance local search ability, and combine with SA to strengthen the population diversity to enable particles to escape from local minima. Test results on several typical test functions show that this new algorithm has a significant improve in searching ability and effectively overcome the premature convergence problem.


Sign in / Sign up

Export Citation Format

Share Document