correlation algorithm
Recently Published Documents


TOTAL DOCUMENTS

445
(FIVE YEARS 85)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Sergey Grachev ◽  
Quentin Hérault ◽  
Jun Wang ◽  
Matteo Balestrieri ◽  
Hervé Montigaud ◽  
...  

Abstract By combining the well-known grid reflection method with a digital image correlation algorithm and a geometrical optics model, a new method is proposed for measuring the change of curvature of a smooth reflecting substrate, a common reporter of stress state of deposited layers. This tool, called Pattern Reflection for Mapping of Curvature (PReMC), can be easily implemented for the analysis of the residual stress during deposition processes and is sufficiently accurate to follow the compressivetensile-compressive stress transition during the sputtering growth of a Ag film on a Si substrate. Unprecedented resolution below 10-5m-1can be reached when measuring a homogeneous curvature. A comparison with the conventional laser-based tool is also provided in terms of dynamical range and resolution. In addition, the method is capable of mapping local variations in the case of a non-uniform curvature as illustrated by the case of a non-homogeneous Mo film under high compressive stress. PReMC offers interesting perspectives for in situ accurate stress monitoring in the field of thin film growth.


Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 35
Author(s):  
Marlon Núñez

The prediction of solar energetic particle (SEP) events may help to improve the mitigation of adverse effects on humans and technology in space. UMASEP (University of Málaga Solar particle Event Predictor) is an empirical model scheme that predicts SEP events. This scheme is based on a dual-model approach. The first model predicts well-connected events by using an improved lag-correlation algorithm for analyzing soft X-ray (SXR) and differential proton fluxes to estimate empirically the Sun–Earth magnetic connectivity. The second model predicts poorly connected events by analyzing the evolution of differential proton fluxes. This study presents the evaluation of UMASEP-10 version 2, a tool based on the aforementioned scheme for predicting all >10 MeV SEP events, including those without associated flare. The evaluation of this tool is presented in terms of the probability of detection (POD), false alarm ratio (FAR) and average warning time (AWT). The best performance was achieved for the solar cycle 24 (i.e., 2008–2019), obtaining a POD of 91.1% (41/45), a FAR of 12.8% (6/47) and an AWT of 2 h 46 min. These results show that UMASEP-10 version 2 obtains a high POD and low FAR mainly because it is able to detect true Sun–Earth magnetic connections.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 407
Author(s):  
Thomas De Kerf ◽  
Georgios Pipintakos ◽  
Zohreh Zahiri ◽  
Steve Vanlanduit ◽  
Paul Scheunders

In this study, we propose a new method to identify corrosion minerals in carbon steel using hyperspectral imaging (HSI) in the shortwave infrared range (900–1700 nm). Seven samples were artificially corroded using a neutral salt spray test and examined using a hyperspectral camera. A normalized cross-correlation algorithm is used to identify four different corrosion minerals (goethite, magnetite, lepidocrocite and hematite), using reference spectra. A Fourier Transform Infrared spectrometer (FTIR) analysis of the scraped corrosion powders was used as a ground truth to validate the results obtained by the hyperspectral camera. This comparison shows that the HSI technique effectively detects the dominant mineral present in the samples. In addition, HSI can also accurately predict the changes in mineral composition that occur over time.


2022 ◽  
Vol 11 (1) ◽  
pp. 0-0

Many computing methods have been studied in intuitionistic fuzzy environment to enhance the resourcefulness of intuitionistic fuzzy sets in modelling real-life problems, among which, correlation coefficient is prominent. This paper proposes a new intuitionistic fuzzy correlation algorithm via intuitionistic fuzzy deviation, variance and covariance by taking into account the complete parameters of intuitionistic fuzzy sets. This new computing technique does not only evaluates the strength of relationship between the intuitionistic fuzzy sets but also indicates whether the intuitionistic fuzzy sets have either positive or negative linear relationship. The proposed technique is substantiated with some theoretical results, and numerically validated to be superior in terms of performance index in contrast to some hitherto methods. Multi-criteria decision-making processes involving pattern recognition and students’ admission process are determined with the aid of the proposed intuitionistic fuzzy correlation algorithm coded with JAVA programming language.


Author(s):  
Ismael Lopez Sanchez ◽  
Miguel Angel Rosas Galaviz ◽  
Damian Gomez Herrera ◽  
Luis Rizo Dominguez

2021 ◽  
Author(s):  
Ke Zeng ◽  
Junfeng Han ◽  
Haitao Wang ◽  
Chen Wang ◽  
Xiaoping Xie

Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1771
Author(s):  
Nischal Koirala ◽  
Gordon McLennan

Blood flow rate in dialysis (vascular) access is the key parameter to examine patency and to evaluate the outcomes of various endovascular interve7ntions. While angiography is extensively used for dialysis access–salvage procedures, to date, there is no image-based blood flow measurement application commercially available in the angiography suite. We aim to calculate the blood flow rate in the dialysis access based on cine-angiographic and fluoroscopic image sequences. In this study, we discuss image-based methods to quantify access blood flow in a flow phantom model. Digital subtraction angiography (DSA) and fluoroscopy were used to acquire images at various sampling rates (DSA—3 and 6 frames/s, fluoroscopy—4 and 10 pulses/s). Flow rates were computed based on two bolus tracking algorithms, peak-to-peak and cross-correlation, and modeled with three curve-fitting functions, gamma variate, lagged normal, and polynomial, to correct errors with transit time measurement. Dye propagation distance and the cross-sectional area were calculated by analyzing the contrast enhancement in the vessel. The calculated flow rates were correlated versus an in-line flow sensor measurement. The cross-correlation algorithm with gamma-variate curve fitting had the best accuracy and least variability in both imaging modes. The absolute percent error (mean ± SEM) of flow quantification in the DSA mode at 6 frames/s was 21.4 ± 1.9%, and in the fluoroscopic mode at 10 pulses/s was 37.4 ± 3.6%. The radiation dose varied linearly with the sampling rate in both imaging modes and was substantially low to invoke any tissue reactions or stochastic effects. The cross-correlation algorithm and gamma-variate curve fitting for DSA acquisition at 6 frames/s had the best correlation with the flow sensor measurements. These findings will be helpful to develop a software-based vascular access flow measurement tool for the angiography suite and to optimize the imaging protocol amenable for computational flow applications.


Sign in / Sign up

Export Citation Format

Share Document