scholarly journals Analysis of the Proton Exchange Membrane Fuel Cell in transient operation

2019 ◽  
Vol 128 ◽  
pp. 01026
Author(s):  
Andrzej Wilk ◽  
Daniel Węcel

Currently, fuel cells are increasingly used in industrial installations, means of transport and household applications as a source of electricity and heat. The paper presents the results of experimental tests of PEMFC at variable load, which characterizes the cell's operation in real installations. The measurements made show changes in the performance of the fuel cell during step changing or smooth changing of an electric load. Load was carried out as a change in the current or a change in the resistance of the receiver. The analysis covered the times of reaching steady states and the efficiencyof the fuel cell system taking into account additional devices. The analysis of the measurement results will allow determining the possibility of using fuel cells in installations with a rapidly changingload profile and indicate possible solutions to improve the performance of the installation.

Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 498
Author(s):  
Andrzej Wilk ◽  
Daniel Węcel

Currently, fuel cells are increasingly used in industrial installations, means of transport, and household applications as a source of electricity and heat. The paper presents the results of experimental tests of a Proton Exchange Membrane Fuel Cell (PEMFC) at variable load, which characterizes the cell’s operation in real installations. A detailed analysis of the power needed for operation fuel cell auxiliary devices (own needs power) was carried out. An analysis of net and gross efficiency was carried out in various operating conditions of the device. The measurements made show changes in the performance of the fuel cell during step changing or smooth changing of an electric load. Load was carried out as a change in the current or a change in the resistance of the receiver. The analysis covered the times of reaching steady states and the efficiency of the fuel cell system taking into account auxiliary devices. In the final part of the article, an analysis was made of the influence of the fuel cell duration of use on obtained parameters. The analysis of the measurement results will allow determination of the possibility of using fuel cells in installations with a rapidly changing load profile and indicate possible solutions to improve the performance of the installation.


Author(s):  
Badreddine KANOUNI ◽  
◽  
Abd Essalam BADOUD ◽  
Saad MEKHILEF ◽  
◽  
...  

Fuel cells output power depends on the operating conditions, including cell temperature, oxygen pressure, hydrogen pressure, tempureter . In each particular condition, there is only one unique operating point for a fuel cell system with the maximum output. Thus, a maximum power point tracking (MPPT) controller is needed to increase the efficiency of the PEMFC systems. In this paper an efficient method fuzzy logic controller is proposed for MPPT of the proton exchange membrane (PEM) fuel cells, boost converter. FLC adjusts the operating point of the PEM fuel cell to the maximum power by tuning of the boost converter duty cycle. To demonstrate the performance of the proposed algorithm, simulation results are sumulated in two cases, in normel condution and variation in temperature .the FLC algorithm with fast convergence, high accuracy and very low power fluctuations tracks the maximum power point of the fuel cell system


Author(s):  
Surajudeen O. Obayopo ◽  
Tunde Bello-Ochende ◽  
Josua P. Meyer

Fuel cell technology offers a promising alternative to conventional fossil fuel energy sources. Proton exchange membrane fuel cells (PEMFC) in particular have become sustainable choice for the automotive industries because of its low pollution, low noise and quick start-up at low temperatures. Researches are on-going to improve its performance and reduce cost of this class of energy systems. In this work, a novel approach to optimise proton exchange membrane (PEM) fuel cell gas channels in the systems bipolar plates with the aim of globally optimising the overall system net power performance at minimised pressure drop and subsequently low pumping power requirement for the reactant species gas was carried out. In addition, the effect of various gas diffusion layer (GDL) properties on the fuel cell performance was examined. Simulations were done ranging from 0.6 to 1.6 mm for channel width, 0.5 to 3.0 mm for channel depth and 0.1 to 0.7 for the GDL porosity. A gradient based optimisation algorithm is implemented which effectively handles an objective function obtained from a computational fluid dynamics simulation to further enhance the obtained optimum values of the examined multiple parameters for the fuel cell system. The results indicate that effective match of reactant gas channel and GDL properties enhance the performance of the fuel cell system. The numerical results computed agree well with experimental data in the literature. Consequently, the results obtained provide useful information for improving the design of fuel cells.


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Annika Carlson ◽  
Shun Yu ◽  
Göran Lindbergh ◽  
Rakel Wreland Lindström ◽  
...  

The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in-situ as a function of CNF surface charge density (600 and 1550 µmol g<sup>-1</sup>), counterion (H<sup>+</sup>or Na<sup>+</sup>), membrane thickness and fuel cell relative humidity (RH 55 to 95 %). The structural evolution of the membranes as a function of RH as measured by Small Angle X-ray scattering shows that water channels are formed only above 75 % RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (Na<sup>+</sup>or H<sup>+</sup>). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm<sup>-1</sup>at 30 °C between 65 and 95 % RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈ 30 % thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.<br>


2017 ◽  
Vol 10 (1) ◽  
pp. 96-105 ◽  
Author(s):  
Mohammed Jourdani ◽  
Hamid Mounir ◽  
Abdellatif El Marjani

Background: During last few years, the proton exchange membrane fuel cells (PEMFCs) underwent a huge development. Method: The different contributions to the design, the material of all components and the efficiencies are analyzed. Result: Many technical advances are introduced to increase the PEMFC fuel cell efficiency and lifetime for transportation, stationary and portable utilization. Conclusion: By the last years, the total cost of this system is decreasing. However, the remaining challenges that need to be overcome mean that it will be several years before full commercialization can take place.This paper gives an overview of the recent advancements in the development of Proton Exchange Membrane Fuel cells and remaining challenges of PEMFC.


Energy ◽  
2020 ◽  
pp. 119362
Author(s):  
Seok-Ho Seo ◽  
Si-Doek Oh ◽  
Jinwon Park ◽  
Hwanyeong Oh ◽  
Yoon-Young Choi ◽  
...  

2015 ◽  
Vol 3 (16) ◽  
pp. 8847-8854 ◽  
Author(s):  
Zhibin Guo ◽  
Ruijie Xiu ◽  
Shanfu Lu ◽  
Xin Xu ◽  
Shichun Yang ◽  
...  

A novel submicro-pore containing proton exchange membrane is designed and fabricated for application in high-temperature fuel cells.


Sign in / Sign up

Export Citation Format

Share Document