scholarly journals Asperities effect on polypropylene & polyester geotextile-geomembrane interface shear behaviour

2019 ◽  
Vol 92 ◽  
pp. 13017
Author(s):  
Daniel Adeleke ◽  
Denis Kalumba ◽  
Johnny Oriokot

The summary of this paper is focused on the result of a study that used quantitative measures of surface texture as the basis for examining the effects of asperities on the shear characteristics of geotextile-geomembrane interfaces. About 30 large direct shear tests were conducted to evaluate the geotextile-geomembrane interface shear strength properties. The results indicated a non-linear failure envelopes and strain softening behaviour at a normal stress range of 50 – 400 kPa. For most interface tested, the polyester-geotextiles resulted in higher shear strength as compared with polypropylene-geotextiles. Also, the polyester and polypropylene geotextile interface with the high asperity geomembrane produces a similar percentage increase in friction angle at the residual state. For textured geomembranes interfaced with both geotextile, polyester geotextile exhibited relatively less time before failure. Also, asperity height has a more pronounced effect than asperity density on the residual interface shear strength. The outcome of this study would provide a recommendation and guide that can lead to an improved basis for geosynthetics selection in various engineering application.

2021 ◽  
Vol 13 (15) ◽  
pp. 8201
Author(s):  
Lihua Li ◽  
Han Yan ◽  
Henglin Xiao ◽  
Wentao Li ◽  
Zhangshuai Geng

It is well known that geomembranes frequently and easily fail at the seams, which has been a ubiquitous problem in various applications. To avoid the failure of geomembrane at the seams, photocuring was carried out with 1~5% photoinitiator and 2% carbon black powder. This geomembrane can be sprayed and cured on the soil surface. The obtained geomembrane was then used as a barrier, separator, or reinforcement. In this study, the direct shear tests were carried out with the aim to investigate the interfacial characteristics of photocured geomembrane–clay/sand. The results show that a 2% photoinitiator has a significant effect on the impermeable layer for the photocured geomembrane–clay interface. As for the photocured geomembrane–sand interface, it is reasonable to choose a geomembrane made from a 4% photoinitiator at the boundary of the drainage layer and the impermeable layer in the landfill. In the cover system, it is reasonable to choose a 5% photoinitiator geomembrane. Moreover, as for the interface between the photocurable geomembrane and clay/sand, the friction coefficient increases initially and decreases afterward with the increase of normal stress. Furthermore, the friction angle of the interface between photocurable geomembrane and sand is larger than that of the photocurable geomembrane–clay interface. In other words, the interface between photocurable geomembrane and sand has better shear and tensile crack resistance.


2021 ◽  
Vol 13 (16) ◽  
pp. 9446
Author(s):  
Artit Udomchai ◽  
Menglim Hoy ◽  
Apichat Suddeepong ◽  
Amornrit Phuangsombat ◽  
Suksun Horpibulsuk ◽  
...  

In this research, large direct shear tests were conducted to evaluate the interface shear strength between reclaimed asphalt pavement (RAP) and kenaf geogrid (RAP–geogrid) and to also assess their viability as an environmentally friendly base course material. The influence of factors such as the gradation of RAP particles and aperture sizes of geogrid (D) on interface shear strength of the RAP–geogrid interface was evaluated under different normal stresses. A critical analysis was conducted on the present and previous test data on geogrids reinforced recycled materials. The D/FD, in which FD is the recycled materials’ particle content finer than the aperture of geogrid, was proposed as a prime parameter governing the interface shear strength. A generalized equation was proposed for predicting the interface shear strength of the form: α = a(D/FD) + b, where α is the interface shear strength coefficient, which is the ratio of the interface shear strength to the shear strength of recycled material, and a and b are constants. The constant values of a and b were found to be dependent upon types of recycled material, irrespective of types of geogrids. A stepwise procedure to determine variable a, which is required for analysis and design of geogrids reinforced recycled materials in roads with various gradations was also suggested.


Author(s):  
Ruslan S. Amarasinghe ◽  
Dharma Wijewickreme ◽  
Hisham T. Eid

Experimental work is undertaken at the University of British Columbia (UBC) to study the soil-pipe interface shear strength at levels of shear displacements and effective normal stresses typically encountered in offshore soil-pipe interaction problems. A macro-scale interface direct shear apparatus having a test specimen footprint of 1.72 m × 1.75 m was designed and built for this purpose. The apparatus is capable of testing various soil-pipe interfaces under effective normal stresses in the range of 3 kPa to 6 kPa. A maximum shear displacement of 1.2 m is achievable at rates ranging from 0.1 μm/s to 1 mm/s. Sensors mounted at the interface enable the accurate determination of the effective normal stress at the interface when fully saturated fine-grained soils are tested. This paper presents some observations arising from a series of interface direct shear tests involving fine-grained soils of different plasticity against bare and epoxy coated steel surfaces.


Sign in / Sign up

Export Citation Format

Share Document