base course
Recently Published Documents


TOTAL DOCUMENTS

487
(FIVE YEARS 155)

H-INDEX

17
(FIVE YEARS 4)

Author(s):  
Hyunjun Oh ◽  
William J. Likos ◽  
Tuncer B. Edil

Poor drainage of roadway base/subbase materials can lead to increased pore water pressure, reduction of strength and stiffness, and freeze-thaw damage. Base course drainability is dependent on physical properties of the material that affect its water flow and retention behavior including particle size distribution, fines content, density or porosity, the geometric and boundary conditions of the pavement system, and site-specific environmental conditions. Objectives of this project are to quantitatively assess permeability and water retention characteristics of representative roadway base materials, to derive predictive equations for indirect estimation of material properties that control drainability, and to develop and recommend rating systems for assessing more general base materials. Laboratory tests were conducted on 16 samples of materials used in or considered for use in roadway applications to determine grain size distribution, hydraulic conductivity, and soil-water characteristic curves. Results are correlated to grain size characteristics including percent gravel, percent fines, grain size indices (e.g., D10, D30), and unit weight. Procedures are provided to qualitatively assess drainability as “excellent,”“marginal,” or “poor,” from grain size, thereby offering a rationale to reduce pavement life cycle costs, improve safety, realize material cost savings, and reduce environmental impacts.


Designs ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 78
Author(s):  
Kareem Othman

Laboratory tests for the estimation of the compaction parameters, namely the maximum dry density (MDD) and optimum moisture content (OMC) are time-consuming and costly. Thus, this paper employs the artificial neural network technique for the prediction of the OMC and MDD for the aggregate base course from relatively easier index properties tests. The grain size distribution, plastic limit, and liquid limits are used as the inputs for the development of the ANNs. In this study, multiple ANNs (240 ANNs) are tested to choose the optimum ANN that produces the best predictions. This paper focuses on studying the impact of three different activation functions: number of hidden layers, number of neurons per hidden layer on the predictions, and heatmaps are generated to compare the performance of every ANN with different settings. Results show that the optimum ANN hyperparameters change depending on the predicted parameter. Additionally, the hyperbolic tangent activation is the most efficient activation function as it outperforms the other two activation functions. Additionally, the simplest ANN architectures results in the best predictions, as the performance of the ANNs deteriorates with the increase in the number of hidden layers or the number of neurons per hidden layers.


2021 ◽  
pp. 100100
Author(s):  
Yoshinori Fukubayashi ◽  
Atsushi Koyama ◽  
Daisuke Suetsugu
Keyword(s):  

Author(s):  
Suhail Akram

Abstract: A field trial was carried out to investigate the performance of different unconventional geosynthetic materials in unpaved road construction over soft ground.The test site comprises of 25 m long, by 3 m wide test sections, built on a subgrade of undrained shear strength approximately 45 kPa . One isunreinforced and serves as a control section in the study, three sections includea geotextile, and one includes a geogrid. Each test section incorporated avariable thickness of sandy gravel base course material, between25 and 45 cmthick. They were loaded in sequence by a vehicle of standard axle load.Performance of the test sections was evaluated from measurements of rut depth, base course thickness, base course deformations, geosynthetic strain, and deformed profile of the geosynthetic, with increasing number of vehicle passes.The four geosynthetic materials used exhibited a broad range of stiffness and material properties ,but the general performance of the four reinforced sections was similar on the base course layers. On contrary thinner subgrades showed a significant difference between the geosynthetics Keywords: Geo-synthetic materials, geo-textile, geo-grid, unpaved road.


2021 ◽  
pp. 3-6
Author(s):  
Y.S. Dong ◽  
H. Zhang ◽  
Y. Hou ◽  
J.L. Tian

2021 ◽  
Vol 44 (4) ◽  
pp. 1-14
Author(s):  
Paula Pascoal ◽  
Amanda Sagrilo ◽  
Magnos Baroni ◽  
Luciano Specht ◽  
Deividi Pereira

This article presents the study of the resilient behavior of three soil horizons from a deposit of lateritic soil employed in a pavement structure in Rio Grande do Sul, Brazil. The use of lateritic soils in pavement layers is a common practice in Brazil and due to its peculiarities, its behavior must be investigated. The methodology consisted of physical and chemical characterization and resilient modulus determination. Samples from the three horizons, compacted at standard, intermediate and modified energy, were analyzed. In addition, undisturbed samples extracted from the interior and top layer of the embankment were submitted to repeated load triaxial tests for resilient modulus determination. The results indicated that the soil exhibit good behavior for pavement subgrade applications, perhaps as subbase or base course layers. The compound and universal models yielded the best correlation coefficients. Furthermore, the results showed that as the compaction energy increased, the resilient modulus also increased, as long as they are within the optimum water content and compaction degree limit. However, when subjected to immersion in water for four days, the resilient behavior decreased about 73% in relation to unsaturated samples.


Author(s):  
Muhammad Misbah Uddin ◽  
Farshad Kamran ◽  
Leila Hashemian

Asphalt emulsion is a common material used for pavement base course stabilization, and cement is usually added as an active filler to improve the stability of asphalt emulsion mixtures further. However, using cement in these mixes has several drawbacks, including high material costs and environmental issues. On the other hand, asphaltenes is a waste by product derived from the processing of Alberta oil-sands bitumen that could be used for the same purpose. This investigation compares the impact of cement and asphaltenes as additives to asphalt emulsion-stabilized layers. To compare the performance properties, cement- and asphaltenes-modified mixtures are prepared at different concentrations. The performance properties of the modified mixtures are investigated by conducting a series of tests including Marshall stability, indirect tensile strength, IDEAL-CT, and tensile strength ratio. In addition, to evaluate low-temperature cracking resistance of the mixtures, indirect tensile strength test is conducted at 0 °C and −10 °C.


2021 ◽  
Vol 1202 (1) ◽  
pp. 012016
Author(s):  
Judita Gražulytė ◽  
Audrius Vaitkus ◽  
Egidijus Rytas Vaidogas ◽  
Ovidijus Šernas

Abstract In the European Union, about 30–40 million tonnes of residues known as municipal solid waste incinerator (MSWI) bottom ash is generated and landfilled annually. To address the continuous growth of landfills and to implement zero waste and circular economy policies, researchers are researching ways to turn MSWI bottom ash into a useable resource. The conducted studies show that MSWI bottom ash is suitable for civil engineering, especially for roads, however there is a lack of field studies. As a result, MSWI bottom ash was used to construct unbound base course in heavy vehicles parking lot in 2018 and two pedestrian paths in 2018 and 2020 in Vilnius (Lithuania). This paper focuses on the structures composition and performance of those unbound base courses in terms of stability of particle size distribution, bearing capacity and permeability. The conducted study showed promising results for MSWI bottom ash as aggregate (mixture) to construct unbound base course.


2021 ◽  
Vol 1202 (1) ◽  
pp. 012021
Author(s):  
Andrejs Taranovs

Abstract Plate load test is a widely used method in Latvia both in quality control and in road design process. This test is performed according to the standard DIN 18134. Such test usually takes at least 30 minutes and requires certain load weight. Considering the relatively long time needed for this test, alternatives were sought and a potential alternative was defined to perform testing with Falling Weight Deflectometre (FWD). In order to check this assumption both direct and indirect testing was performed and correlation between the results of both tests was defined. In the first case the test was performed in the same location with both pieces of equipment on a surface of unbound pavement. In the second case the test with Falling Weight Deflectometre was performed on the surface of bituminous pavement but plate load test was performed in the same location on the surface of base course with prior demolition of bituminous layers. In order to compare the results of indirect comparative testing, the backcalculation for the data acquired with Falling Weight Deflectometre was performed according to German calculation method. Results acquired with direct testing showed that the testing with Falling Weight Deflectometre and plate load test are interchangeable if no characterization of the layer compaction is required. The German method of backcalculation (FGSV, 2014) is very simple. Despite positive references from other specialists this method in comparative testing did not show sufficiently good correlation with the results acquired in plate load test.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5925
Author(s):  
Grzegorz Mazurek ◽  
Przemysław Buczyński ◽  
Marek Iwański ◽  
Marcin Podsiadło

The deformation of the cold recycled mixture with foamed bitumen in a recycled base with an innovative three-component road binder and foamed bitumen is analysed. Numerical simulation results for the pavement constructed, based on laboratory test results, were verified against the data from the monitoring system installed on the road trial section. In addition, environmental effects, such as air temperature and humidity levels in the pavement structure layers, were considered. Thermal analyses were conducted to identify the thermal properties of the pavement materials under steady heat transfer rate. Determining temperature distribution in the road cross-section in combination with relaxation functions determined for individual pavement layers contributed to the high effectiveness of the numerical simulation of deformation and displacement in the recycled base and the entire pavement. The experimental method of identifying thermal properties allows a fast and satisfactory prediction of temperature distribution in the pavement cross-section.


Sign in / Sign up

Export Citation Format

Share Document