shear characteristics
Recently Published Documents


TOTAL DOCUMENTS

264
(FIVE YEARS 66)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 8 (4) ◽  
pp. 153-158
Author(s):  
Min Zhang ◽  
Shaolong Zhang ◽  
Shiwei Shen ◽  
Weilong Zhang

Soil–rock mixture is a special geological material between homogeneous soil masses and fractured rock masses. In this study, the shear characteristics, movement and failure characteristics of particles and the evolution law of cracks were studied by direct shear tests and particle flow numerical simulations. The results show that the shear stress-shear displacement curves of the soil–rock mixture can be roughly classified into three stages: elastic stage, plastic stage and strain softening stage, and there was a "jump" phenomenon. The higher the rock content was, the more obvious the phenomenon. The shear strength and its indices of the soil–rock mixture did not increase with increasing rock content, but there was an "optimal rock content". According to the experimental and simulation results, particle breakage can be divided into three types: slight failure, partial failure and complete failure. The crack propagation characteristics can be divided into three stages, and the crack propagation depth increases with increasing shear displacement. It increases with increasing vertical stress and decreases with increasing block rock content.


2021 ◽  
Vol 53 (3) ◽  
pp. 5-10
Author(s):  
Valery V. Lapshin ◽  
Olga V. Ivanova ◽  
Maria D. Volkova

The article presents the results of studies of the rigidity of the structure of linen fabrics by an automated method for determining the shear characteristics, which allows implement changes in the angles between the warp and weft threads and a graphical record of the process of thread shear and recovery after shear by means of specially developed software. A method implemented by a specially developed computer program Neuro-Prognosis has been developed for forecasting. An example of predicting the rigidity of the structure of linen fabrics by the characteristics of their structure is given.


2021 ◽  
Author(s):  
Jawad Khan

Several recent studies on action recognition have emphasised the significance of including motioncharacteristics clearly in the video description. This work shows that properly partitioning visualmotion into dominant and residual motions enhances action recognition algorithms greatly, both interms of extracting space-time trajectories and computing descriptors. Then, using differentialmotion scalar variables, divergence, curl, and shear characteristics, we create a new motiondescriptor, the DCS descriptor. It adds to the results by capturing additional information on localmotion patterns. Finally, adopting the recently proposed VLAD coding technique in image retrievalimproves action recognition significantly. On three difficult datasets, namely Hollywood 2,HMDB51, and Olympic Sports, our three additions are complementary and lead to beat all reportedresults by a large margin.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jian-Qi Wu ◽  
Lei Li ◽  
Guo-Hui Yuan ◽  
Bin Wu ◽  
Hao Zhang ◽  
...  

To investigate the interface shear characteristics between various geosynthetics and recycled concrete aggregate (RCA), 30 large-scale monotonic direct shear tests were conducted. The main work was to analyse the effect of a biaxial polypropylene geogrid, a glass fiber geogrid, a warp-knitted polyester geogrid, a woven geotextile, and geonet on the interface shear properties of RCA. The test results show that adding a biaxial polypropylene geogrid or a geonet to RCA can improve its interface shear strength. The inclusion of glass fiber geogrids, warp-knitted polyester geogrids, and woven geotextiles decrease the interface shear strength of RCA. The reinforcing RCA with geosynthetics can effectively suppress its shear dilation, and the change in internal friction angle is consistent with the change law of the material interface enhancement coefficient. Finally, the aperture size of a geogrid has a significant effect on the mechanical properties of the geogrid-RCA interface. The interface shear strength increases first and then decreases with an increase in the ratio between aperture size and median particle diameter. It is concluded that there is an optimal range of aperture ratio between a geogrid and RCA.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Guansheng Han ◽  
Fei Xiong ◽  
Yu Zhou ◽  
Leibo Song ◽  
Xingkai Wang

The constant normal stiffness (CNS) boundary condition is more representative for the underground engineering, in which the shear-induced dilation is restricted by surrounding rocks, resulting in an increase in the normal stress. Therefore, the use of CNS boundary conditions in the research of shear-slip failure of underground rock engineering is more in line with the actual situation. Taking the instability and failure of surrounding rock in underground engineering as the background, the present study introduces the engineering background of CNS boundary conditions and the research progress on shear characteristics of rock joints under CNS boundary conditions. Three key directions for future research are proposed based on the latest research results of shear characteristics of rock joint under CNS boundary conditions: ① developing a rock joint shear test system that can realize the function of “CNS boundary conditions + shear-seepage test + visualization”; ② carrying out the shear tests of real rock joints under CNS boundary conditions based on 3D scanning and 3D carving technology; and ③ carrying out the shear tests of rock joint network under CNS boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document