scholarly journals Possibility of applying unmanned aerial vehicle and thermal imaging in several canopy cover class for wildlife monitoring – preliminary results

2020 ◽  
Vol 211 ◽  
pp. 04007
Author(s):  
Dede Aulia Rahman ◽  
Yudi Setiawan

Tropical rainforests are one of the important habitats on earth but are rarely explored because they are difficult to access, making their cryptic animals challenging to monitor. Unmanned aerial vehicle (UAV) with thermal infrared imaging (TIR) technology is gaining entry into wildlife research and monitoring. The researcher tested the possibility of applying DJI Mavic 2 Enterprise Dual with FLIR as aerial survey platforms to wildlife in the five tree density classes in the IPB University Campus. To assess the effectiveness of using drones in detecting wildlife, the researcher measured the optimum flying height, sound level, temperature, and optimum flight time in each canopy cover class. The optimum height for animal detection is <50 m HAGL with a sound level that animals can still tolerate. Wildlife detected had body temperatures around 27 °C and were conspicuous in the thermal infrared imagery at night and early morning when the forest canopy was cool (15–27°C), but were difficult to detect by mid-day. By that time, the direct sunshine had heated up canopy vegetation to over 30°C. Species were difficult to identify from thermal infrared imagery alone but could be recognized from synchronized visual images taken during the daytime.

Author(s):  
L.-P. Chrétien ◽  
J. Théau ◽  
P. Ménard

Wildlife aerial surveys require time and significant resources. Multispecies detection could reduce costs to a single census for species that coexist spatially. Traditional methods are demanding for observers in terms of concentration and are not adapted to multispecies censuses. The processing of multispectral aerial imagery acquired from an unmanned aerial vehicle (UAV) represents a potential solution for multispecies detection. The method used in this study is based on a multicriteria object-based image analysis applied on visible and thermal infrared imagery acquired from a UAV. This project aimed to detect American bison, fallow deer, gray wolves, and elks located in separate enclosures with a known number of individuals. Results showed that all bison and elks were detected without errors, while for deer and wolves, 0–2 individuals per flight line were mistaken with ground elements or undetected. This approach also detected simultaneously and separately the four targeted species even in the presence of other untargeted ones. These results confirm the potential of multispectral imagery acquired from UAV for wildlife census. Its operational application remains limited to small areas related to the current regulations and available technology. Standardization of the workflow will help to reduce time and expertise requirements for such technology.


2018 ◽  
Vol 10 (8) ◽  
pp. 1266 ◽  
Author(s):  
Patrick Shin ◽  
Temuulen Sankey ◽  
Margaret Moore ◽  
Andrea Thode

Forests in the Southwestern United States are becoming increasingly susceptible to large wildfires. As a result, forest managers are conducting forest fuel reduction treatments for which spatial fuels and structure information are necessary. However, this information currently has coarse spatial resolution and variable accuracy. This study tested the feasibility of using unmanned aerial vehicle (UAV) imagery to estimate forest canopy fuels and structure in a southwestern ponderosa pine stand. UAV-based multispectral images and Structure-from-Motion point clouds were used to estimate canopy cover, canopy height, tree density, canopy base height, and canopy bulk density. Estimates were validated with field data from 57 plots and aerial photography from the U.S. Department of Agriculture National Agriculture Imaging Program. Results indicate that UAV imagery can be used to accurately estimate forest canopy cover (correlation coefficient (R2) = 0.82, root mean square error (RMSE) = 8.9%). Tree density estimates correctly detected 74% of field-mapped trees with a 16% commission error rate. Individual tree height estimates were strongly correlated with field measurements (R2 = 0.71, RMSE = 1.83 m), whereas canopy base height estimates had a weaker correlation (R2 = 0.34, RMSE = 2.52 m). Estimates of canopy bulk density were not correlated to field measurements. UAV-derived inputs resulted in drastically different estimates of potential crown fire behavior when compared with coarse resolution LANDFIRE data. Methods from this study provide additional data to supplement, or potentially substitute, traditional estimates of canopy fuel.


2021 ◽  
Vol 39 (1) ◽  
pp. 63-80
Author(s):  
C. Riveros-Burgos ◽  
S. Ortega-Farías ◽  
L. Morales-Salinas ◽  
F. Fuentes-Peñailillo ◽  
Fei Tian

Sign in / Sign up

Export Citation Format

Share Document