stream temperature
Recently Published Documents


TOTAL DOCUMENTS

443
(FIVE YEARS 93)

H-INDEX

47
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Martin A. Briggs ◽  
Phillip Goodling ◽  
Zachary C. Johnson ◽  
Karli M. Rogers ◽  
Nathaniel P. Hitt ◽  
...  

Abstract. In mountain headwater streams the quality and resilience of cold-water habitat is regulated by surface stream channel connectivity and groundwater exchange. These critical hydrologic processes are thought to be influenced by the stream corridor bedrock contact depth (sediment thickness), which is often inferred from sparse hillslope borehole information, piezometer refusal, and remotely sensed data. To investigate how local bedrock depth might control summer stream temperature and channel disconnection (dewatering) patterns, we measured stream corridor bedrock depth by collecting and interpreting 191 passive seismic datasets along eight headwater streams in Shenandoah National Park (Virginia USA). In addition, we used multiyear stream temperature and streamflow records to calculate summer baseflow metrics along and among the study streams. Finally, comprehensive visual surveys of stream channel dewatering were conducted in 2016, 2019, and 2021 during summer baseflow conditions (124 total km of stream length). We found that measured bedrock depths were not well-characterized by soils maps or an existing global-scale geologic dataset, where the latter overpredicted measured depths by 12.2 m (mean), or approximately four times the average bedrock depth of 2.9 m. Half of the eight study stream corridors had an average bedrock depth of less than 2 m. Of the eight study streams, Staunton River had the deepest average bedrock depth (3.4 m), the coldest summer temperature profiles, and substantially higher summer baseflow indices compared to the other study steams. Staunton River also exhibited paired air and water annual temperature signals suggesting deeper groundwater influence, and the stream channel did not dewater in lower sections during any baseflow survey. In contrast, streams Paine Run and Piney River did show pronounced, patchy channel dewatering, with Paine Run having dozens of discrete dry channel sections ranging 1 to greater than 300 m in length. Stream dewatering patterns were apparently influenced by a combination of discrete deep bedrock (20 m+) features and more subtle sediment thickness variation (1–4 m), depending on local stream valley hydrogeology. In combination these unique datasets show the first large-scale empirical support for existing conceptual models of headwater stream disconnection based on underflow capacity and shallow groundwater supply.


2021 ◽  
Author(s):  
Farshid Rahmani ◽  
Kathryn Lawson ◽  
Alison Appling ◽  
Samantha Oliver ◽  
Chaopeng Shen

2021 ◽  
Vol 603 ◽  
pp. 127015
Author(s):  
Ruba A.M. Mohamed ◽  
Chris Gabrielli ◽  
John S. Selker ◽  
Frank Selker ◽  
Scott C. Brooks ◽  
...  

2021 ◽  
Author(s):  
Farshid Rahmani ◽  
Chaopeng Shen ◽  
Samantha Oliver ◽  
Kathryn Lawson ◽  
Alison Appling

2021 ◽  
Author(s):  
Hanieh Seyedhashemi ◽  
Jean-Philippe Vidal ◽  
Jacob S. Diamond ◽  
Dominique Thiéry ◽  
Céline Monteil ◽  
...  

Abstract. Stream temperature appears to be increasing globally, but its rate remains poorly constrained due to a paucity of long-term data and difficulty in parsing effects of hydroclimate and landscape variability. Here, we address these issues using the physically-based thermal model T-NET (Temperature-NETwork) coupled with the EROS semi-distributed hydrological model to reconstruct past daily stream temperature and streamflow at the scale of the entire Loire River basin in France (105 km2 with 52278 reaches). Stream temperature increased for almost all reaches in all seasons (mean = +0.38 °C/decade) over the 1963–2019 period. Increases were greatest in spring and summer with a median increase of +0.38 °C (range = +0.11– +0.76 °C) and +0.44 °C (+0.08– +1.02 °C) per decade, respectively. Rates of stream temperature increases were greater than for air temperature across seasons for 50–86 % of reaches. Spring and summer increases were typically the greatest in the southern headwaters (up to +1 °C/decade) and in the largest rivers (Strahler order > 5). Importantly, air temperature and streamflow exerted joint influence on stream temperature trends, where the greatest stream temperature increases were accompanied by similar trends in air temperature (up to +0.71 °C/decade) and the greatest decreases in streamflow (up to −16 %/decade). Indeed, for the majority of reaches, positive stream temperature anomalies exhibited synchrony with positive anomalies in air temperature and negative anomalies in streamflow, highlighting the dual control exerted by these hydroclimatic drivers. Moreover, spring and summer stream temperature, air temperature, and streamflow time series exhibited common change-points occurring in the late 1980s, suggesting a temporal coherence between changes in the hydroclimatic drivers and a rapid stream temperature response. Critically, riparian vegetation shading mitigated stream temperature increases by up to 16 % in smaller streams (i.e., < 30 km from the source). Our results provide strong support for basin-wide increases in stream temperature due to joint effects of rising air temperature and reduced streamflow. We suggest that some of these climate change-induced effects can be mitigated through the restoration and maintenance of riparian forests, and call for continued high-resolution monitoring of stream temperature at large scales.


Author(s):  
Hanieh Seyedhashemi ◽  
Jean-Philippe Vidal ◽  
Jacob S. Diamond ◽  
Dominique Thiéry ◽  
Céline Monteil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document