scholarly journals Prediction of 24-Hour Urinary Sodium Excretion Using a Single Spot Urine Samples in Moroccan Population

2021 ◽  
Vol 319 ◽  
pp. 01066
Author(s):  
Mohamed Idrissi ◽  
Naima Saeid ◽  
Anass Rami ◽  
Mohammed El Mzibri ◽  
Arthur Assako ◽  
...  

Background: Excessive sodium intake is linked to high blood pressure. Estimating sodium intake is difficult. The 24-h urine collection is currently the recommended method for estimating intake but cumbersome for large population studies. Predictive model to estimate sodium intake based on single spot urine were developed, but showed inconsistency when used in extern populations. This study aims to develop a specific model for estimating sodium excretion over 24 hours for the Moroccan population. Methods: 371 participants in the urinary validation sub-study of the STEP-wise survey-Morocco 2017-2018 provided a valid 24-hour urine collection and spot urine specimens. Participant were randomly assigned to the training (n=183) and the validation data set (n=188). Results: A prediction model for 24-hour sodium excretion was developed. Adjusted R2 was 0.258. In the validation data set, correlation was 0.431 [95%CI; 0.258-0.580], and the adjusted R2 was 0.190. The Bland-Altman plot showed a nonsignificant small mean bias of -18 mg (95%CI, -213 to 177) in predicting 24-h urinary sodium excretion at the group level. At the individual level, limits of agreement were wide. Conclusion: This new model developed from a single spot urine could be used to predict the average 24-h sodium excretion of Moroccan adults.

Circulation ◽  
2012 ◽  
Vol 125 (suppl_10) ◽  
Author(s):  
Ulla Toft ◽  
Charlotte Cerquira ◽  
Torben Jørgensen

Background: Tanaka et al (J Hum Hypert 2002; 16: 97-103) developed a simple method to estimate populational 24-h urinary sodium excretion using a casual urine specimen. However, this method was developed and validated in a Japanese population and thus this method might not be valid in populations that differ markedly from this population. Hypothesis: We assessed the hypothesis that the 24 hour urinary sodium excretion can be estimated from a casual spot urine using the Tanaka prediction method in a Danish general population. Methods: Overall 473 Danish individuals provided both a 24h urine collection and a spot urine sample. Data were collected in the Danthyr study (248 women aged 25-30 years and 60-65 years) and the Inter99 study (102 men and 113 women aged 30-60 years), respectively. Only participants with complete 24h urine collection (validated by the PABA method) were included. We compared the estimated daily sodium excretion through 24h urine (the gold standard) with the predicted 24 h sodium excretion from a causal urine specimen, using the Tanaka prediction method. Results: The predicted median 24 h sodium excretion (median [5 and 95 percentile]) was 8.6 gram [3.7;17.5] compared with a median measured 24 h sodium excretion of 8.9 [5.4; 13:1]. The mean (sd) residual (measured minus predicted 24 h sodium excretion) was 0.08 (3.7). The correlation (Spearman) between predicted and measured 24 h sodium excretion was 0.39 and the R 2 was 0.17. The proportion of individuals classified in the same or adjacent quintiles was 67%. Gross misclassification was found for 3% of the individuals. However, a Bland-Altman plot indicated a tendency of underestimation the sodium excretion for individuals with a high level of sodium excretion (>14 g per day). Conclusion: The Tanaka prediction model gives a reasonable estimate of sodium intake in a Danish population using casual spot urines. However, the validation study showed a tendency of underestimation of the sodium intake for individuals with a high sodium excretion (>14 g per day).


2020 ◽  
Author(s):  
RM McLean ◽  
SM Williams ◽  
Lisa Te Morenga ◽  
JI Mann

© 2018, Macmillan Publishers Limited, part of Springer Nature. Background: We aimed to test the difference between estimates of dietary sodium intake using 24-h diet recall and spot urine collection in a large sample of New Zealand adults. Methods: We analysed spot urine results, 24-h diet recall, dietary habits questionnaire and anthropometry from a representative sample of 3312 adults aged 15 years and older who participated in the 2008/09 New Zealand Adult Nutrition Survey. Estimates of adult population sodium intake were derived from 24-h diet recall and spot urine sodium using a formula derived from analysis of INTERSALT data. Correlations, limits of agreement and mean difference were calculated for the total sample, and for population subgroups. Results: Estimated total population 24-h urinary sodium excretion (mean (95% CI)) from spot urine samples was 3035 mg (2990, 3079); 3612 mg (3549, 3674) for men and 2507 mg (2466, 2548) for women. Estimated mean usual daily sodium intake from 24-h diet recall data (excluding salt added at the table) was 2564 mg (2519, 2608); 2849 mg (2779, 2920) for men and 2304 mg (2258, 2350) for women. Correlations between estimates were poor, especially for men, and limits of agreement using Bland–Altman mean difference analysis were wide. Conclusions: There is a poor agreement between estimates of individual sodium intake from spot urine collection and those from 24-hour diet recall. Although, both 24-hour dietary recall and estimated urinary excretion based on spot urine indicate mean population sodium intake is greater than 2 g, significant differences in mean intake by method deserve further investigation in relation to the gold standard, 24-hour urinary sodium excretion.


2019 ◽  
Vol 32 (10) ◽  
pp. 983-991
Author(s):  
Elizabeth R Wan ◽  
Jennifer Cross ◽  
Reecha Sofat ◽  
Stephen B Walsh

Abstract BACKGROUND Sodium intake is correlated with the development of hypertension. Guyton’s principals suggest that the 24-hour urinary sodium excretion reflects sodium ingestion over the same period. 24-hour urine collections are arduous to collect, so many centers use spot urinary measurements instead. We compared spot to matched 24-hour urinary electrolyte measurements. METHODS We examined 419 hypertensive patients from the UCL Complex Hypertension Clinic. 77 had matched and complete 24-hour and spot urinary and serum biochemistry to examine. We compared the spot and 24-hour urinary; sodium concentration, Na/Cr ratio, FENa, Kawasaki and Tanaka estimated sodium excretion as well as the potassium concentration, K/Cr ratio, Kawasaki and Tanaka potassium excretion. RESULTS Our cohort was 58% male and the median age was 41 years. The 24-hour and spot Na concentrations correlated moderately (r = 0.4633, P < 0.0001). The 24-hour and spot Na/creatinine ratios correlated weakly (r = 0.2625, P = 0.0194). The 24-hour and spot FENa results showed a weak negative correlation (r = −0.222, P = ns). The 24-hour sodium excretion and the Kawasaki-derived spot urine sodium excretion correlated moderately (r = 0.3118, P = 0.0052). All Bland–Altman analyses showed poor agreement. The 24-hour and spot potassium concentrations correlated very poorly (r = 0.1158, P = ns). The 24-hour and spot urinary K/creatinine ratios correlated weakly (r = 0.47, P ≤ 0.0001). 24-hour and Kawasaki and Tanaka estimated potassium excretions correlated much better (r = 0.58, P < 0.0001). CONCLUSIONS Spot urinary measurements of sodium give a very poor understanding of the natriuresis occurring over the same 24-hour period. The Kawasaki and Tanaka estimations of the 24-hour sodium excretion showed a much lower correlation than previously reported.


2020 ◽  
Author(s):  
RM McLean ◽  
SM Williams ◽  
Lisa Te Morenga ◽  
JI Mann

© 2018, Macmillan Publishers Limited, part of Springer Nature. Background: We aimed to test the difference between estimates of dietary sodium intake using 24-h diet recall and spot urine collection in a large sample of New Zealand adults. Methods: We analysed spot urine results, 24-h diet recall, dietary habits questionnaire and anthropometry from a representative sample of 3312 adults aged 15 years and older who participated in the 2008/09 New Zealand Adult Nutrition Survey. Estimates of adult population sodium intake were derived from 24-h diet recall and spot urine sodium using a formula derived from analysis of INTERSALT data. Correlations, limits of agreement and mean difference were calculated for the total sample, and for population subgroups. Results: Estimated total population 24-h urinary sodium excretion (mean (95% CI)) from spot urine samples was 3035 mg (2990, 3079); 3612 mg (3549, 3674) for men and 2507 mg (2466, 2548) for women. Estimated mean usual daily sodium intake from 24-h diet recall data (excluding salt added at the table) was 2564 mg (2519, 2608); 2849 mg (2779, 2920) for men and 2304 mg (2258, 2350) for women. Correlations between estimates were poor, especially for men, and limits of agreement using Bland–Altman mean difference analysis were wide. Conclusions: There is a poor agreement between estimates of individual sodium intake from spot urine collection and those from 24-hour diet recall. Although, both 24-hour dietary recall and estimated urinary excretion based on spot urine indicate mean population sodium intake is greater than 2 g, significant differences in mean intake by method deserve further investigation in relation to the gold standard, 24-hour urinary sodium excretion.


10.2196/16696 ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. e16696
Author(s):  
Michael P Dorsch ◽  
Maria L Cornellier ◽  
Armella D Poggi ◽  
Feriha Bilgen ◽  
Peiyu Chen ◽  
...  

Background High dietary sodium intake is a significant public health problem in the United States. High sodium consumption is associated with high blood pressure and high risk of cardiovascular disease. Objective The aim of this study was to evaluate the effect of a just-in-time adaptive mobile app intervention, namely, LowSalt4Life, on reducing sodium intake in adults with hypertension. Methods In this study, 50 participants aged ≥18 years who were under treatment for hypertension were randomized (1:1, stratified by gender) into 2 groups, namely, the App group (LowSalt4Life intervention) and the No App group (usual dietary advice) in a single-center, prospective, open-label randomized controlled trial for 8 weeks. The primary endpoint was the change in the 24-hour urinary sodium excretion estimated from spot urine by using the Kawasaki equation, which was analyzed using unpaired two-sided t tests. Secondary outcomes included the change in the sodium intake measured by the food frequency questionnaire (FFQ), the 24-hour urinary sodium excretion, blood pressure levels, and the self-reported confidence in following a low-sodium diet. Results From baseline to week 8, there was a significant reduction in the Kawasaki-estimated 24-hour urinary sodium excretion calculated from spot urine in the App group compared to that in the No App group (–462 [SD 1220] mg vs 381 [SD 1460] mg, respectively; P=.03). The change in the 24-hour urinary sodium excretion was –637 (SD 1524) mg in the App group and –322 (SD 1485) mg in the No App group (P=.47). The changes in the estimated sodium intake as measured by 24-hour dietary recall and by FFQ in the App group were –1537 (SD 2693) mg and –1553 (SD 1764) mg while those in the No App group were –233 (SD 2150) mg and –515 (SD 1081) mg, respectively (P=.07 and P=.01, respectively). The systolic blood pressure change from baseline to week 8 in the App group was –7.5 mmHg while that in the No App group was –0.7 mmHg (P=.12), but the self-confidence in following a low-sodium diet was not significantly different between the 2 groups. Conclusions This study shows that a contextual just-in-time mobile app intervention resulted in a greater reduction in the dietary sodium intake in adults with hypertension than that in the control group over a 8-week period, as measured by the estimated 24-hour urinary sodium excretion from spot urine and FFQ. The intervention group did not show a significant difference from the control group in the self-confidence in following a low sodium diet and in the 24-hour urinary sodium excretion or dietary intake of sodium as measured by the 24-hour dietary recall. A larger clinical trial is warranted to further elucidate the effects of the LowSalt4Life intervention on sodium intake and blood pressure levels in adults with hypertension. Trial Registration ClinicalTrials.gov NCT03099343; https://clinicaltrials.gov/ct2/show/NCT03099343 International Registered Report Identifier (IRRID) RR2-10.2196/11282


2019 ◽  
Author(s):  
Michael P Dorsch ◽  
Maria L Cornellier ◽  
Armella D Poggi ◽  
Feriha Bilgen ◽  
Peiyu Chen ◽  
...  

BACKGROUND High dietary sodium intake is a significant public health problem in the United States. High sodium consumption is associated with high blood pressure and high risk of cardiovascular disease. OBJECTIVE The aim of this study was to evaluate the effect of a just-in-time adaptive mobile app intervention, namely, LowSalt4Life, on reducing sodium intake in adults with hypertension. METHODS In this study, 50 participants aged ≥18 years who were under treatment for hypertension were randomized (1:1, stratified by gender) into 2 groups, namely, the App group (LowSalt4Life intervention) and the No App group (usual dietary advice) in a single-center, prospective, open-label randomized controlled trial for 8 weeks. The primary endpoint was the change in the 24-hour urinary sodium excretion estimated from spot urine by using the Kawasaki equation, which was analyzed using unpaired two-sided <i>t</i> tests. Secondary outcomes included the change in the sodium intake measured by the food frequency questionnaire (FFQ), the 24-hour urinary sodium excretion, blood pressure levels, and the self-reported confidence in following a low-sodium diet. RESULTS From baseline to week 8, there was a significant reduction in the Kawasaki-estimated 24-hour urinary sodium excretion calculated from spot urine in the App group compared to that in the No App group (–462 [SD 1220] mg vs 381 [SD 1460] mg, respectively; <i>P</i>=.03). The change in the 24-hour urinary sodium excretion was –637 (SD 1524) mg in the App group and –322 (SD 1485) mg in the No App group (<i>P</i>=.47). The changes in the estimated sodium intake as measured by 24-hour dietary recall and by FFQ in the App group were –1537 (SD 2693) mg and –1553 (SD 1764) mg while those in the No App group were –233 (SD 2150) mg and –515 (SD 1081) mg, respectively (<i>P</i>=.07 and <i>P</i>=.01, respectively). The systolic blood pressure change from baseline to week 8 in the App group was –7.5 mmHg while that in the No App group was –0.7 mmHg (<i>P</i>=.12), but the self-confidence in following a low-sodium diet was not significantly different between the 2 groups. CONCLUSIONS This study shows that a contextual just-in-time mobile app intervention resulted in a greater reduction in the dietary sodium intake in adults with hypertension than that in the control group over a 8-week period, as measured by the estimated 24-hour urinary sodium excretion from spot urine and FFQ. The intervention group did not show a significant difference from the control group in the self-confidence in following a low sodium diet and in the 24-hour urinary sodium excretion or dietary intake of sodium as measured by the 24-hour dietary recall. A larger clinical trial is warranted to further elucidate the effects of the LowSalt4Life intervention on sodium intake and blood pressure levels in adults with hypertension. CLINICALTRIAL ClinicalTrials.gov NCT03099343; https://clinicaltrials.gov/ct2/show/NCT03099343 INTERNATIONAL REGISTERED REPORT RR2-10.2196/11282


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Xiaoxiao Wen ◽  
Jeremiah Stamler ◽  
Linda Van Horn ◽  
Martha L Daviglus ◽  
Alan R Dyer ◽  
...  

Introduction: Twenty-four-hour (24-h) urine excretion is the “gold standard” for estimation of sodium intake. Sodium intake assessed by 24-h dietary recall has been reported to correlate with urinary sodium excretion, and is considered reliable for assessing population sodium intake. However, the validity of 24-h dietary recall across countries has rarely been studied. The present study aims to compare the 24-h dietary recall with 24-h urine collection for the estimation of population sodium intake in different countries. Methods: Data from the International study of Macro- and Micro-nutrients and Blood Pressure (INTERMAP) were used in the analyses, including 4680 men and women ages 40-59 years from 17 population samples in China, Japan, UK and USA. Four 24-h dietary recalls and two timed 24-h urine samples were collected for each participant; the averages of the dietary and urinary sodium measurements were used. The correlation and difference between the two methods were then explored and compared across countries. Results: After adjustment for population sample and gender, a significant correlation was found in all four countries between dietary and urinary sodium measurements (r=0.33, 0.45, 0.36 and 0.46 for China, Japan, UK and USA respectively, P<0.01 for all). The mean difference of sodium measurements between dietary recalls and urine collection was small for Japan (3.9 mmol), UK (2.9 mmol), and USA (-3.5 mmol), whereas it was large for China (-54.0 mmol). Further, population average sodium intake was over- or under-reported by about 2% for Japan, UK and USA participants with use of urinary sodium excretion as the reference, while the sodium intake was under-reported by 24% for Chinese. Conclusions: The correlation of sodium intake estimated by the two methods is similar (0.33-0.46) for the four countries, and the 24-h dietary recall data demonstrate great accuracy in assessing sodium intake at the population level for Japan, UK and USA. For Chinese populations, however, the 24-h urine collection is preferable to the 24-h dietary recall since dietary recalls yielded considerable underestimation of sodium intake.


Author(s):  
Gianluigi Ardissino ◽  
Antonio Vergori ◽  
Cesare Vergori ◽  
Laura Martelli ◽  
Valeria Daccò ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaofu Du ◽  
Le Fang ◽  
Jianwei Xu ◽  
Xiangyu Chen ◽  
Yamin Bai ◽  
...  

AbstractThe direction and magnitude of the association between sodium and potassium excretion and blood pressure (BP) may differ depending on the characteristics of the study participant or the intake assessment method. Our objective was to assess the relationship between BP, hypertension and 24-h urinary sodium and potassium excretion among Chinese adults. A total of 1424 provincially representative Chinese residents aged 18 to 69 years participated in a cross-sectional survey in 2017 that included demographic data, physical measurements and 24-h urine collection. In this study, the average 24-h urinary sodium and potassium excretion and sodium-to-potassium ratio were 3811.4 mg/day, 1449.3 mg/day, and 4.9, respectively. After multivariable adjustment, each 1000 mg difference in 24-h urinary sodium excretion was significantly associated with systolic BP (0.64 mm Hg; 95% confidence interval [CI] 0.05–1.24) and diastolic BP (0.45 mm Hg; 95% CI 0.08–0.81), and each 1000 mg difference in 24-h urinary potassium excretion was inversely associated with systolic BP (− 3.07 mm Hg; 95% CI − 4.57 to − 1.57) and diastolic BP (− 0.94 mm Hg; 95% CI − 1.87 to − 0.02). The sodium-to-potassium ratio was significantly associated with systolic BP (0.78 mm Hg; 95% CI 0.42–1.13) and diastolic BP (0.31 mm Hg; 95% CI 0.10–0.53) per 1-unit increase. These associations were mainly driven by the hypertensive group. Those with a sodium intake above about 4900 mg/24 h or with a potassium intake below about 1000 mg/24 h had a higher risk of hypertension. At higher but not lower levels of 24-h urinary sodium excretion, potassium can better blunt the sodium-BP relationship. The adjusted odds ratios (ORs) of hypertension in the highest quartile compared with the lowest quartile of excretion were 0.54 (95% CI 0.35–0.84) for potassium and 1.71 (95% CI 1.16–2.51) for the sodium-to-potassium ratio, while the corresponding OR for sodium was not significant (OR, 1.28; 95% CI 0.83–1.98). Our results showed that the sodium intake was significantly associated with BP among hypertensive patients and the inverse association between potassium intake and BP was stronger and involved a larger fraction of the population, especially those with a potassium intake below 1000 mg/24 h should probably increase their potassium intake.


2021 ◽  
Vol 40 (S1) ◽  
Author(s):  
Fatimah Othman ◽  
Rashidah Ambak ◽  
Mohd Azahadi Omar ◽  
Suzana Shahar ◽  
Noor Safiza Mohd Nor ◽  
...  

Abstract Background Monitoring sodium intake through 24-h urine collection sample is recommended, but the implementation of this method can be difficult. The objective of this study was to develop and validate an equation using spot urine concentration to predict 24-h sodium excretion in the Malaysian population. Methods This was a Malaysian Community Salt Study (MyCoSS) sub-study, which was conducted from October 2017 to March 2018. Out of 798 participants in the MyCoSS study who completed 24-h urine collection, 768 of them have collected one-time spot urine the following morning. They were randomly assigned into two groups to form separate spot urine equations. The final spot urine equation was derived from the entire data set after confirming the stability of the equation by double cross-validation in both study groups. Newly derived spot urine equation was developed using the coefficients from the multiple linear regression test. A Bland-Altman plot was used to measure the mean bias and limits of agreement between estimated and measured 24-h urine sodium. The estimation of sodium intake using the new equation was compared with other established equations, namely Tanaka and INTERSALT. Results The new equation showed the least mean bias between measured and predicted sodium, − 0.35 (− 72.26, 71.56) mg/day compared to Tanaka, 629.83 (532.19, 727.47) mg/day and INTERSALT, and 360.82 (284.34, 437.29) mg/day. Predicted sodium measured from the new equation showed greater correlation with measured sodium (r = 0.50) compared to Tanaka (r =0.24) and INTERSALT (r = 0.44), P < 0.05. Conclusion Our newly developed equation from spot urine can predict least mean bias of sodium intake among the Malaysian population when 24-h urine sodium collection is not feasible.


Sign in / Sign up

Export Citation Format

Share Document