scholarly journals Spot urine and 24-h diet recall estimates of dietary sodium intake from the 2008/09 New Zealand Adult Nutrition Survey: a comparison

2020 ◽  
Author(s):  
RM McLean ◽  
SM Williams ◽  
Lisa Te Morenga ◽  
JI Mann

© 2018, Macmillan Publishers Limited, part of Springer Nature. Background: We aimed to test the difference between estimates of dietary sodium intake using 24-h diet recall and spot urine collection in a large sample of New Zealand adults. Methods: We analysed spot urine results, 24-h diet recall, dietary habits questionnaire and anthropometry from a representative sample of 3312 adults aged 15 years and older who participated in the 2008/09 New Zealand Adult Nutrition Survey. Estimates of adult population sodium intake were derived from 24-h diet recall and spot urine sodium using a formula derived from analysis of INTERSALT data. Correlations, limits of agreement and mean difference were calculated for the total sample, and for population subgroups. Results: Estimated total population 24-h urinary sodium excretion (mean (95% CI)) from spot urine samples was 3035 mg (2990, 3079); 3612 mg (3549, 3674) for men and 2507 mg (2466, 2548) for women. Estimated mean usual daily sodium intake from 24-h diet recall data (excluding salt added at the table) was 2564 mg (2519, 2608); 2849 mg (2779, 2920) for men and 2304 mg (2258, 2350) for women. Correlations between estimates were poor, especially for men, and limits of agreement using Bland–Altman mean difference analysis were wide. Conclusions: There is a poor agreement between estimates of individual sodium intake from spot urine collection and those from 24-hour diet recall. Although, both 24-hour dietary recall and estimated urinary excretion based on spot urine indicate mean population sodium intake is greater than 2 g, significant differences in mean intake by method deserve further investigation in relation to the gold standard, 24-hour urinary sodium excretion.

2020 ◽  
Author(s):  
RM McLean ◽  
SM Williams ◽  
Lisa Te Morenga ◽  
JI Mann

© 2018, Macmillan Publishers Limited, part of Springer Nature. Background: We aimed to test the difference between estimates of dietary sodium intake using 24-h diet recall and spot urine collection in a large sample of New Zealand adults. Methods: We analysed spot urine results, 24-h diet recall, dietary habits questionnaire and anthropometry from a representative sample of 3312 adults aged 15 years and older who participated in the 2008/09 New Zealand Adult Nutrition Survey. Estimates of adult population sodium intake were derived from 24-h diet recall and spot urine sodium using a formula derived from analysis of INTERSALT data. Correlations, limits of agreement and mean difference were calculated for the total sample, and for population subgroups. Results: Estimated total population 24-h urinary sodium excretion (mean (95% CI)) from spot urine samples was 3035 mg (2990, 3079); 3612 mg (3549, 3674) for men and 2507 mg (2466, 2548) for women. Estimated mean usual daily sodium intake from 24-h diet recall data (excluding salt added at the table) was 2564 mg (2519, 2608); 2849 mg (2779, 2920) for men and 2304 mg (2258, 2350) for women. Correlations between estimates were poor, especially for men, and limits of agreement using Bland–Altman mean difference analysis were wide. Conclusions: There is a poor agreement between estimates of individual sodium intake from spot urine collection and those from 24-hour diet recall. Although, both 24-hour dietary recall and estimated urinary excretion based on spot urine indicate mean population sodium intake is greater than 2 g, significant differences in mean intake by method deserve further investigation in relation to the gold standard, 24-hour urinary sodium excretion.


Circulation ◽  
2012 ◽  
Vol 125 (suppl_10) ◽  
Author(s):  
Ulla Toft ◽  
Charlotte Cerquira ◽  
Torben Jørgensen

Background: Tanaka et al (J Hum Hypert 2002; 16: 97-103) developed a simple method to estimate populational 24-h urinary sodium excretion using a casual urine specimen. However, this method was developed and validated in a Japanese population and thus this method might not be valid in populations that differ markedly from this population. Hypothesis: We assessed the hypothesis that the 24 hour urinary sodium excretion can be estimated from a casual spot urine using the Tanaka prediction method in a Danish general population. Methods: Overall 473 Danish individuals provided both a 24h urine collection and a spot urine sample. Data were collected in the Danthyr study (248 women aged 25-30 years and 60-65 years) and the Inter99 study (102 men and 113 women aged 30-60 years), respectively. Only participants with complete 24h urine collection (validated by the PABA method) were included. We compared the estimated daily sodium excretion through 24h urine (the gold standard) with the predicted 24 h sodium excretion from a causal urine specimen, using the Tanaka prediction method. Results: The predicted median 24 h sodium excretion (median [5 and 95 percentile]) was 8.6 gram [3.7;17.5] compared with a median measured 24 h sodium excretion of 8.9 [5.4; 13:1]. The mean (sd) residual (measured minus predicted 24 h sodium excretion) was 0.08 (3.7). The correlation (Spearman) between predicted and measured 24 h sodium excretion was 0.39 and the R 2 was 0.17. The proportion of individuals classified in the same or adjacent quintiles was 67%. Gross misclassification was found for 3% of the individuals. However, a Bland-Altman plot indicated a tendency of underestimation the sodium excretion for individuals with a high level of sodium excretion (>14 g per day). Conclusion: The Tanaka prediction model gives a reasonable estimate of sodium intake in a Danish population using casual spot urines. However, the validation study showed a tendency of underestimation of the sodium intake for individuals with a high sodium excretion (>14 g per day).


2021 ◽  
Vol 319 ◽  
pp. 01066
Author(s):  
Mohamed Idrissi ◽  
Naima Saeid ◽  
Anass Rami ◽  
Mohammed El Mzibri ◽  
Arthur Assako ◽  
...  

Background: Excessive sodium intake is linked to high blood pressure. Estimating sodium intake is difficult. The 24-h urine collection is currently the recommended method for estimating intake but cumbersome for large population studies. Predictive model to estimate sodium intake based on single spot urine were developed, but showed inconsistency when used in extern populations. This study aims to develop a specific model for estimating sodium excretion over 24 hours for the Moroccan population. Methods: 371 participants in the urinary validation sub-study of the STEP-wise survey-Morocco 2017-2018 provided a valid 24-hour urine collection and spot urine specimens. Participant were randomly assigned to the training (n=183) and the validation data set (n=188). Results: A prediction model for 24-hour sodium excretion was developed. Adjusted R2 was 0.258. In the validation data set, correlation was 0.431 [95%CI; 0.258-0.580], and the adjusted R2 was 0.190. The Bland-Altman plot showed a nonsignificant small mean bias of -18 mg (95%CI, -213 to 177) in predicting 24-h urinary sodium excretion at the group level. At the individual level, limits of agreement were wide. Conclusion: This new model developed from a single spot urine could be used to predict the average 24-h sodium excretion of Moroccan adults.


Circulation ◽  
2013 ◽  
Vol 127 (suppl_12) ◽  
Author(s):  
Mary Cogswell ◽  
Chia-Yih Wang ◽  
Te-Ching Chen ◽  
Christine Pfeiffer ◽  
Paul Elliott ◽  
...  

Introduction: Reducing mean population sodium intake by ~1200 mg is projected to reduce thousands of deaths from heart disease and stroke and save billions of health care dollars annually. Twenty-four hour urine collection is recommended for assessing changes in mean population sodium intake, but can be difficult to implement. Predicting 24-hour urine sodium excretion using spot urines is not recommended due to diurnal variations in excretion. Further, sodium excretion patterns differ between black and white persons. We assessed the validity of previously published prediction equations for 24-hour sodium excretion in black and other young adults by timing of spot urine collection. Design: Of 481 adult volunteers aged 18-39 years (50% Blacks) asked to participate in a 2011 study in the Metropolitan DC area, 407 collected each urine void in a separate container for 24 hours. Four timed voids from the 24-h urine collection were selected (morning, afternoon, evening, and overnight) to use with previously published predictive equations. Predictive equations were based on one of two approaches; 1) an indirect approach using spot urine sodium-to-creatinine concentrations and predicted 24-hour creatinine excretion ( Tanaka, Kawasaki, Mage ), and 2) a direct approach using spot urine sodium, potassium, and creatinine concentrations, and age, and body mass index with separate equations by sex ( Brown ). We assessed mean differences between predicted and measured 24-hour sodium excretion (bias) and individual differences across levels of sodium excretion using Bland-Altman plots. Results: Among participants, mean measured 24-hour sodium excretion was ~3300 mg (SD ~1400 mg). Of the equations evaluated, mean bias in predicted 24-hour sodium excretion was least from Brown equations when using morning (-165 mg, 95% confidence interval [CI], -295, -36 mg), afternoon (-90 mg, 95% CI, -208, 28 mg) or evening ( -120 mg, 95% CI -230, -11 mg) spot urines. When using overnight spot urines, mean bias from Brown equations was greatest and statistically significant (-247 mg, 95% CI, -348, -151 mg). When using overnight spot urines, mean bias from Tanaka (-23 mg) or Mage (-145 mg) equations was not significant, however, when stratified by sex, mean biases were significant and in opposite directions. Among Blacks, mean biases from Brown were not significant (-167 to 122 mg) except using overnight specimens among Black females (-267 mg, 95% CI, -525, -47 mg). Across equations and time periods, Bland-Altman plots indicated significant bias at the individual level. Conclusions: Of the evaluated equations, predicted 24-hour urine sodium excretion using the Brown equations with morning, afternoon, or evening specimens may provide the least biased estimates of group mean sodium intake among young US adults. None of the equations adequately predicted individual 24-hour sodium excretion measured on the same day.


2019 ◽  
Vol 32 (10) ◽  
pp. 983-991
Author(s):  
Elizabeth R Wan ◽  
Jennifer Cross ◽  
Reecha Sofat ◽  
Stephen B Walsh

Abstract BACKGROUND Sodium intake is correlated with the development of hypertension. Guyton’s principals suggest that the 24-hour urinary sodium excretion reflects sodium ingestion over the same period. 24-hour urine collections are arduous to collect, so many centers use spot urinary measurements instead. We compared spot to matched 24-hour urinary electrolyte measurements. METHODS We examined 419 hypertensive patients from the UCL Complex Hypertension Clinic. 77 had matched and complete 24-hour and spot urinary and serum biochemistry to examine. We compared the spot and 24-hour urinary; sodium concentration, Na/Cr ratio, FENa, Kawasaki and Tanaka estimated sodium excretion as well as the potassium concentration, K/Cr ratio, Kawasaki and Tanaka potassium excretion. RESULTS Our cohort was 58% male and the median age was 41 years. The 24-hour and spot Na concentrations correlated moderately (r = 0.4633, P < 0.0001). The 24-hour and spot Na/creatinine ratios correlated weakly (r = 0.2625, P = 0.0194). The 24-hour and spot FENa results showed a weak negative correlation (r = −0.222, P = ns). The 24-hour sodium excretion and the Kawasaki-derived spot urine sodium excretion correlated moderately (r = 0.3118, P = 0.0052). All Bland–Altman analyses showed poor agreement. The 24-hour and spot potassium concentrations correlated very poorly (r = 0.1158, P = ns). The 24-hour and spot urinary K/creatinine ratios correlated weakly (r = 0.47, P ≤ 0.0001). 24-hour and Kawasaki and Tanaka estimated potassium excretions correlated much better (r = 0.58, P < 0.0001). CONCLUSIONS Spot urinary measurements of sodium give a very poor understanding of the natriuresis occurring over the same 24-hour period. The Kawasaki and Tanaka estimations of the 24-hour sodium excretion showed a much lower correlation than previously reported.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260408
Author(s):  
Pitchaporn Sonuch ◽  
Surasak Kantachuvesiri ◽  
Prin Vathesatogkit ◽  
Raweewan Lappichetpaiboon ◽  
Worawan Chailimpamontri ◽  
...  

The gold standard for estimating sodium intake is 24h urine sodium excretion. Several equations have been used to estimate 24h urine sodium excretion, however, a validated formula for calculating 24h urine sodium excretion from 12h urine collection has not yet been established. This study aims to develop novel equations for estimating 24h urine sodium excretion from 12h and random spot urine collection and also to validate existing spot urine equations in the Thai population. A cross-sectional survey was carried out among 209 adult hospital personnel. Participants were asked to perform a 12h daytime, 12h nighttime, and a random spot urine collection over a period of 24 hours. The mean 24h urine sodium excretion was 4,055±1,712 mg/day. Estimated urine sodium excretion from 3 different equations using random spot urine collection showed moderate correlation and agreement with actual 24h urine sodium excretion (r = 0.54, P<0.001, ICC = 0.53 for Kawasaki; r = 0.57, P<0.001, ICC = 0.44 for Tanaka; r = 0.60, P<0.001, ICC = 0.45 for INTERSALT). Novel equations for predicting 24h urine sodium excretion were then developed using variables derived from 12h daytime urine collection, 12h nighttime urine collection, random spot urine collection, 12h daytime with random spot urine collection, and 12h nighttime with random spot urine collection which showed strong correlation and agreement with actual measured values (r = 0.88, P<0.001, ICC = 0.87; r = 0.83, P<0.001, ICC = 0.81; r = 0.67, P<0.001, ICC = 0.62; r = 0.90, P<0.001, ICC = 0.90; and r = 0.83, p<0.001, ICC = 0.82 respectively). Bland-Altman plots indicated good agreement between predicted values and actual 24h urine sodium excretion using the new equations. Newly derived equations from 12h daytime and 12h nighttime urine collection with or without casual spot urine collection were able to accurately predict 24h urine sodium excretion.


Author(s):  
Abu Mohd Naser ◽  
Feng J. He ◽  
Mahbubur Rahman ◽  
Norm R.C. Campbell

We evaluated the relationship between estimated 24-hour urinary sodium excretion from the Kawasaki, Tanaka, and INTERSALT (International Study of Sodium, Potassium, and Blood Pressure) formulas and blood pressure (BP). We pooled 10 034 person-visit data from 3 cohort studies in Bangladesh that had measured 24-hour urine sodium (m-24hUNa), potassium, creatinine excretion, and BP. We used m-24hUNa, potassium, and creatinine where necessary, rather than spot urine values in the formulas. Bland-Altman plots were used to determine the bias associated with formula-estimated sodium relative to m-24hUNa. We compared the sodium excretion and BP relationships from m-24hUNa versus formula-estimated sodium excretions, using restricted cubic spline plots for adjusted multilevel linear models. All formulas overestimated 24-hour sodium at lower levels but underestimated 24-hour sodium at higher levels. There was a linear relationship between m-24hUNa excretion and systolic BP, while estimated sodium excretion from all 3 formulas had a J-shaped relationship with systolic BP. The relationships between urine sodium excretion and diastolic BP were more complex but were also altered by using formulas. All formulas had associations with BP when a sex-specific constant sodium concentration was inserted in place of measured sodium. Since we used the m-24hUNa, potassium, and creatinine concentrations in formulas, the J-shaped relationships are due to intrinsic problems in the formulas, not due to spot urine sampling. Formula-estimated 24-hour urine sodium excretion should not be used to examine the relationship between sodium excretion and BP since they alter the real associations.


1982 ◽  
Vol 62 (5) ◽  
pp. 471-477 ◽  
Author(s):  
E. G. Schneider ◽  
Sarah D. Gleason ◽  
A. Zucker

1. The effect of dietary sodium intake on pre-and post-prandial plasma sodium concentrations and on the pattern of sodium and potassium excretion was determined in conscious female dogs, who were allowed free access to water and were fed on commercial low sodium diets supplemented with 0, 50, 100 or 250 mmol of sodium chloride/day for 6 days. 2. The preprandial plasma sodium concentration was not altered by the dietary sodium intake. However, the 4 h postprandial plasma sodium concentration was linearly related to the magnitude of dietary sodium intake, whereas the 8 h postprandial plasma sodium concentration was elevated only in dogs receiving 250 mmol of sodium/day. 3. The (0–8 h/0–24 h) ratio for urinary sodium excretion was significantly correlated with both the dietary sodium intake and the postprandial increase in plasma sodium concentration. 4. The 24 h excretion of potassium was not markedly affected by the dietary sodium intake; however, the (0–8 h/0–24 h) ratio for potassium excretion was significantly correlated with both the dietary sodium intake and the (0–8 h/0–24 h) ratio for sodium excretion. 5. These data indicate that: (a) postprandial increases in plasma sodium concentration need to be considered when evaluating the mechanisms involved in the daily regulation of sodium balance; (b) the daily pattern of potassium excretion is closely linked to the dietary sodium intake.


Sign in / Sign up

Export Citation Format

Share Document