The Search for Gravitational Waves

2008 ◽  
Vol 30 ◽  
pp. 15-25
Author(s):  
A.M. Sintes
Keyword(s):  
2016 ◽  
Vol 186 (10) ◽  
pp. 1133-1152 ◽  
Author(s):  
V.I. Pustovoit

2017 ◽  
Vol 13 (1) ◽  
pp. 4522-4534
Author(s):  
Armando Tomás Canero

This paper presents sound propagation based on a transverse wave model which does not collide with the interpretation of physical events based on the longitudinal wave model, but responds to the correspondence principle and allows interpreting a significant number of scientific experiments that do not follow the longitudinal wave model. Among the problems that are solved are: the interpretation of the location of nodes and antinodes in a Kundt tube of classical mechanics, the traslation of phonons in the vacuum interparticle of quantum mechanics and gravitational waves in relativistic mechanics.


Author(s):  
Zhiyuan Wang ◽  
Andrew Geraci ◽  
Nancy Aggarwal ◽  
George Winstone

Author(s):  
Michele Maggiore

A comprehensive and detailed account of the physics of gravitational waves and their role in astrophysics and cosmology. The part on astrophysical sources of gravitational waves includes chapters on GWs from supernovae, neutron stars (neutron star normal modes, CFS instability, r-modes), black-hole perturbation theory (Regge-Wheeler and Zerilli equations, Teukoslky equation for rotating BHs, quasi-normal modes) coalescing compact binaries (effective one-body formalism, numerical relativity), discovery of gravitational waves at the advanced LIGO interferometers (discoveries of GW150914, GW151226, tests of general relativity, astrophysical implications), supermassive black holes (supermassive black-hole binaries, EMRI, relevance for LISA and pulsar timing arrays). The part on gravitational waves and cosmology include discussions of FRW cosmology, cosmological perturbation theory (helicity decomposition, scalar and tensor perturbations, Bardeen variables, power spectra, transfer functions for scalar and tensor modes), the effects of GWs on the Cosmic Microwave Background (ISW effect, CMB polarization, E and B modes), inflation (amplification of vacuum fluctuations, quantum fields in curved space, generation of scalar and tensor perturbations, Mukhanov-Sasaki equation,reheating, preheating), stochastic backgrounds of cosmological origin (phase transitions, cosmic strings, alternatives to inflation, bounds on primordial GWs) and search of stochastic backgrounds with Pulsar Timing Arrays (PTA).


Sign in / Sign up

Export Citation Format

Share Document