Observation of gravitational waves from a binary black hole merger – dawn of a new astronomy

2018 ◽  
Vol 29 (2) ◽  
pp. 257-264
Author(s):  
Benno Willke
2020 ◽  
Vol 35 (31) ◽  
pp. 2050205
Author(s):  
Aung Naing Win ◽  
Yu-Ming Chu ◽  
Hasrat Hussain Shah ◽  
Syed Zaheer Abbas ◽  
Munawar Shah

A Satellite Fermi GBM detected recent putative short Gamma Ray Bursts (GRBs) in coincident with the gravitational wave signal GW 150914 produced by the merger of binary black hole (BH). If at least one BH possess magnetic monopole charge in the binary BH system then the short-duration GRBs may produce during the final phase of a binary BH merger. The detection of gravitational waves GW 150914, GW 151226 and LVT 151012 by LIGO gave the evidence that merging of the compact object like binary BH often happens in our universe. In this paper, we report the qualitative model to discuss the generation of electromagnetic radiation from the merging of two BHs with equal masses and at least one BH carrying the magnetic monopole charge in the binary system. In this model, BH possess a magnetic monopole charge that may not be neutralized before the coalescence. During the inspiralling process, the magnetic monopole charge on the BH would produced the electric dipole moment. Short duration GRB would produce by the rapidly evolution of the electric dipole moment which may detectable on Earth. We predict that this model would be beneficial in the future to explain the generation of gravitational wave (GW) plus a electromagnetic signal of multi-wavelength from mergers of magnetically charged BHs.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Juan Calderon Bustillo ◽  
Christopher Evans ◽  
James A. Clark ◽  
Grace Kim ◽  
Pablo Laguna ◽  
...  

Abstract The merger of a binary black hole gives birth to a highly distorted final black hole. The gravitational radiation emitted as this black hole relaxes presents us with the unique opportunity to probe extreme gravity and its connection with the dynamics of the black hole horizon. Using numerical relativity simulations, we demonstrate a connection between a concrete observable feature in the gravitational waves and geometrical features on the dynamical apparent horizon of the final black hole. Specifically, we show how the line-of-sight passage of a “cusp”-like defect on the horizon of the final black hole correlates with “chirp”-like frequency peaks in the post-merger gravitational-waves. These post-merger chirps should be observed and analyzed as the sensitivity of LIGO and Virgo increase and as future generation detectors, such as LISA and the Einstein Telescope, become operational.


2012 ◽  
Vol 86 (6) ◽  
Author(s):  
J. Abadie ◽  
B. P. Abbott ◽  
R. Abbott ◽  
M. Abernathy ◽  
T. Accadia ◽  
...  

2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Sizheng Ma ◽  
Matthew Giesler ◽  
Vijay Varma ◽  
Mark A. Scheel ◽  
Yanbei Chen

2017 ◽  
Vol 32 (39) ◽  
pp. 1730035 ◽  
Author(s):  
Keith Riles

Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst (GRB) and a kilonova, reinforces the excitement of this new era, in which we may soon see other sources of gravitational waves, including continuous, nearly monochromatic signals. Potential continuous wave (CW) sources include rapidly spinning galactic neutron stars and more exotic possibilities, such as emission from axion Bose Einstein “clouds” surrounding black holes. Recent searches in Advanced LIGO data are presented, and prospects for more sensitive future searches are discussed.


Sign in / Sign up

Export Citation Format

Share Document