scholarly journals Full field residual stress determination using hole-drilling and electronic speckle pattern interferometry (ESPI) with phase unwrapping method

2010 ◽  
Vol 6 ◽  
pp. 10001 ◽  
Author(s):  
J.N. Aoh ◽  
B.I. Lyu
2005 ◽  
Vol 490-491 ◽  
pp. 62-66 ◽  
Author(s):  
Jian Luo ◽  
Guillaume Montay ◽  
Jian Lu

For measuring in-depth residual stress in 3D cylinder structure easily in this paper, the semi-destructive incremental hole drilling technique combined with finite element method is used, the calibration coefficients of 3D cylinder components are calculated, and the relationship between strain and stress is determined, the changes of calibration coefficients are analysed, the residual stress of one steering joint of automobile is measured, and the errors of residual stress are discussed.


2013 ◽  
Vol 768-769 ◽  
pp. 79-86 ◽  
Author(s):  
Horst Brünnet ◽  
Dirk Bähre ◽  
Theo J. Rickert ◽  
Dominik Dapprich

The incremental hole-drilling method is a well-known mechanical measurement procedure for the analysis of residual stresses. The newly developed PRISM® technology by Stresstech Group measures stress relaxation optically using electronic speckle pattern interferometry (ESPI). In case of autofrettaged components, the large amount of compressive residual stresses and the radius of the pressurized bores can be challenging for the measurement system. This research discusses the applicability of the measurement principle for autofrettaged cylinders made of steel AISI 4140. The residual stresses are measured after AF and after subsequent boring and reaming. The experimental residual stress depth profiles are compared to numerically acquired results from a finite element analysis (FEA) with the software code ABAQUS. Sample preparation will be considered as the parts have to be sectioned in half in order to access the measurement position. Following this, the influence of the boring and reaming operation on the final residual stress distribution as well as the accuracy of the presented measurement setup will be discussed. Finally, the usability of the FEA method in early design stages is discussed in order to predict the final residual stress distribution after AF and a following post-machining operation.


Sign in / Sign up

Export Citation Format

Share Document