scholarly journals Tidal disruption flares as the source of ultra-high energy cosmic rays

2012 ◽  
Vol 39 ◽  
pp. 07005 ◽  
Author(s):  
G.R. Farrar
2018 ◽  
Vol 616 ◽  
pp. A179 ◽  
Author(s):  
Claire Guépin ◽  
Kumiko Kotera ◽  
Enrico Barausse ◽  
Ke Fang ◽  
Kohta Murase

Tidal disruptions are extremely powerful phenomena that have been designated as candidate sources of ultra-high-energy cosmic rays. The disruption of a star by a black hole can naturally provide protons and heavier nuclei, which can be injected and accelerated to ultra-high energies within a jet. Inside the jet, accelerated nuclei are likely to interact with a dense photon field, leading to a significant production of neutrinos and secondary particles. We model numerically the propagation and interactions of high-energy nuclei in jetted tidal disruption events in order to evaluate consistently their signatures in cosmic rays and neutrinos. We propose a simple model of the light curve of tidal disruption events, consisting of two stages: a high state with bright luminosity and short duration and a medium state, less bright and longer lasting. These two states have different impacts on the production of cosmic rays and neutrinos. In order to calculate the diffuse fluxes of cosmic rays and neutrinos, we model the luminosity function and redshift evolution of jetted tidal disruption events. We find that we can fit the latest ultra-high-energy cosmic-ray spectrum and composition results of the Auger experiment for a range of reasonable parameters. The diffuse neutrino flux associated with this scenario is found to be subdominant, but nearby events can be detected by IceCube or next-generation detectors such as IceCube-Gen2.


2020 ◽  
Vol 29 (1) ◽  
pp. 40-46
Author(s):  
Dmitri L. Khokhlov

AbstractThe studied conjecture is that ultra high energy cosmic rays (UHECRs) are hypothetical Planck neutrinos arising in the decay of the protons falling onto the gravastar. The proton is assumed to decay at the Planck scale into positron and four Planck neutrinos. The supermassive black holes inside active galactic nuclei, while interpreted as gravastars, are considered as UHECR sources. The scattering of the Planck neutrinos by the proton at the Planck scale is considered. The Planck neutrinos contribution to the CR events may explain the CR spectrum from 5 × 1018 eV to 1020 eV. The muon number in the Planck neutrinos-initiated shower is estimated to be larger by a factor of 3/2 in comparison with the standard model that is consistent with the observational data.


2011 ◽  
Vol 20 (supp02) ◽  
pp. 50-56
Author(s):  
◽  
PETER SCHIFFER

The Pierre Auger Observatory is the world's largest experiment for the measurement of ultra-high energy cosmic rays (UHECRs). These UHECRs are assumed to be to be charged particles, and thus are deflected in cosmic magnetic fields. Recent results of the Pierre Auger Observatory addressing the complex of energy ordering of the UHECRs arrival directions are reviewed in this contribution. So far no significant energy ordering has been observed.


2019 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Sergey Ostapchenko

The differences between contemporary Monte Carlo generators of high energy hadronic interactions are discussed and their impact on the interpretation of experimental data on ultra-high energy cosmic rays (UHECRs) is studied. Key directions for further model improvements are outlined. The prospect for a coherent interpretation of the data in terms of the UHECR composition is investigated.


2004 ◽  
Vol 136 ◽  
pp. 159-168 ◽  
Author(s):  
M. Ave ◽  
N. Busca ◽  
A.V. Olinto ◽  
A.A. Watson ◽  
T. Yamamoto

Sign in / Sign up

Export Citation Format

Share Document