scholarly journals First results of the 241Am(n,f) cross section measurement at the Experimental Area 2 of the n_TOF facility at CERN

2020 ◽  
Vol 239 ◽  
pp. 05014
Author(s):  
Z. Eleme ◽  
N. Patronis ◽  
A. Stamatopoulos ◽  
A. Tsinganis ◽  
M. Kokkoris ◽  
...  

Feasibility, design and sensitivity studies on innovative nuclear reactors that could address the issue of nuclear waste transmutation using fuels enriched in minor actinides, require high accuracy cross section data for a variety of neutron-induced reactions from thermal energies to several tens of MeV. The isotope 241Am (T1/2= 433 years) is present in high-level nuclear waste (HLW), representing about 1.8 % of the actinide mass in spent PWR UOx fuel. Its importance increases with cooling time due to additional production from the β-decay of 241Pu with a half-life of 14.3 years. The production rate of 241 Am in conventional reactors, including its further accumulation through the decay of 241Pu and its destruction through transmutation/incineration are very important parameters for the design of any recycling solution. In the present work, the 241 Am(n,f) reaction cross-section was measured using Micromegas detectors at the Experimental Area 2 of the n_TOF facility at CERN. For the measurement, the 235U(n,f) and 238U(n,f) reference reactions were used for the determination of the neutron flux. In the present work an overview of the experimental setup and the adopted data analysis techniques is given along with preliminary results.

2020 ◽  
Vol 27 ◽  
pp. 189
Author(s):  
Zinovia Eleme ◽  
... Et al.

The condition for the safe design and operation of fast neutron reactors and energy boosters (Generation-IV reactors, ADS systems [1]) is the accuracy of nuclear data. The 241Am isotope (T1/2 = 433 years) is highly present in nuclear waste, accounting for about 1.8% of the actinide mass in PWR UOx nuclear reactors’ waste [2]. In addition, the 241Am isotope is further produced by the β decay of the 241Pu isotope (T1/2 = 14.3 years). Given the high production rate of 241Am isotope, its incineration with concurrent energy production is considered to be of utmost importance for the design and implementation of the recycling of existing nuclear waste. Sensitivity studies of the proposed systems for energy production showed that high-precision measurements of the cross section of the 241Am(n,f) reaction are required. In the present work, the 241Am(n,f) reaction cross section was measured in the Second Experimental Area of the n_TOF facility at CERN, using an array of Micromegas detectors. For the measurement, six targets of 241Am with average activity of 17 MBq per sample were coupled with an equal number of detectors in a common chamber. Additionally two 235U and two 238U samples were coupled with Micromegas detectors utilizing the neutron flux determination. Within this work, an overview of the experimental set-up and the adopted data analysis technique is presented along with preliminary results.


2020 ◽  
Vol 239 ◽  
pp. 05005
Author(s):  
A. Kalamara ◽  
S. Chasapoglou ◽  
V. Michalopoulou ◽  
A. Stamatopoulos ◽  
Z. Eleme ◽  
...  

The 234U(n,f) reaction cross section was measured for three neutron energies 14.8, 16.5 and 17.8 MeV, relative to the238U(n,f) reference reaction. The in-beam measurements were carried out by using a set-up based on Micromegas detectors, while the quasi-monoenergetic neutron beams were produced by means of the 3H(d,n)4He reaction at the 5.5MV Tandem T11/25 Accelerator Laboratory of the National Center for Scientific Research "Demokritos" in Athens (Greece). Additionaly, α-spectroscopy measurements were performed in order to determine the active mass of the samples and the corresponding impurities. In order to estimate the fission-fragment detection efficiency, Monte Carlo simulations were carried out using the GEF and FLUKA codes. Furthermore, simulations were also performed by coupling the NeuSDesc and MCNP5 codes for the determination of the neutron energy distribution in all the irradiated samples and the results were used in order to correct for the contribution of low energy parasitic neutrons in the fission yield. The final cross section data are presented, along with the methodology adopted for the treatment of the parasitic neutrons.


2012 ◽  
Vol 113 (12) ◽  
pp. 3054-3100 ◽  
Author(s):  
P. Schillebeeckx ◽  
B. Becker ◽  
Y. Danon ◽  
K. Guber ◽  
H. Harada ◽  
...  

2010 ◽  
Vol 68 (9) ◽  
pp. 1656-1661 ◽  
Author(s):  
M.S. Uddin ◽  
M.R. Zaman ◽  
S.M. Hossain ◽  
I. Spahn ◽  
S. Sudár ◽  
...  

2013 ◽  
Vol 3 (1) ◽  
pp. 60-69 ◽  
Author(s):  
Hamid Aït Abderrahim ◽  
Didier De Bruyn ◽  
Gert Van den Eynde ◽  
Sidney Michiels

Sign in / Sign up

Export Citation Format

Share Document