scholarly journals The Controls and Configuration Software of the ATLAS Data Acquisition System: evolution towards LHC Run 3

2021 ◽  
Vol 251 ◽  
pp. 04019
Author(s):  
Andrei Kazarov ◽  
Adrian Chitan ◽  
Andrei Kazymov ◽  
Alina Corso-Radu ◽  
Igor Aleksandrov ◽  
...  

The ATLAS experiment at the Large Hadron Collider (LHC) operated very successfully in the years 2008 to 2018, in two periods identified as Run 1 and Run 2. ATLAS achieved an overall data-taking efficiency of 94%, largely constrained by the irreducible dead-time introduced to accommodate the limitations of the detector read-out electronics. Out of the 6% dead-time only about 15% could be attributed to the central trigger and DAQ system, and out of these, a negligible fraction was due to the Control and Configuration subsystem. Despite these achievements, and in order to improve even more the already excellent efficiency of the whole DAQ system in the coming Run 3, a new campaign of software updates was launched for the second long LHC shutdown (LS2). This paper presents, using a few selected examples, how the work was approached and which new technologies were introduced into the ATLAS Control and Configuration software. Despite these being specific to this system, many solutions can be considered and adapted to different distributed DAQ systems.

2020 ◽  
Vol 1525 ◽  
pp. 012036
Author(s):  
A Kazarov ◽  
I Aleksandrov ◽  
G Avolio ◽  
M Caprini ◽  
A Chitan ◽  
...  

2021 ◽  
Vol 253 ◽  
pp. 01002
Author(s):  
Fernando Carrió Argos

The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at Large Hadron Collider (LHC). The TileCal readout system consists of about 10,000 channels. In 2025, the LHC will be upgraded leading into the High Luminosity LHC (HL-LHC). The HL-LHC will be capable to deliver an instantaneous luminosity up to seven times compared to the LHC nominal luminosity. The TileCal Phase-II upgrade will replace the majority of the on-detector and off-detector electronics using a new readout schema for the HL-LHC era. The on-detector electronics will digitize and transmit calorimeter signals to the off-detector electronics at the bunch crossing frequency. In the counting rooms, the off-detector electronics will store the digitized samples in pipelined buffers and compute reconstructed trigger objects for the first level of trigger. The TileCal Phase-II upgrade project has undertaken an extensive R&D program which includes the development of a Demonstrator module to evaluate the performance of the new clock and readout architecture for the HL-LHC. A Demonstrator module containing the upgrade on-detector readout electronics was built, tested during several test beam campaigns, and inserted into the ATLAS experiment. The Demonstrator module is operated and read out using a Tile PreProcessor (TilePPr) Demonstrator which enables backward compatibility with the present ATLAS Trigger and Data AcQuisition and the Timing, Trigger and Command systems. This contribution describes the components of the clock distribution and data acquisition system for the Demonstrator module, and its implementation in the ATLAS experiment.


2010 ◽  
Vol 25 (10) ◽  
pp. 749-766
Author(s):  
VIVIAN O'DELL

The CMS Trigger and Data Acquisition Systems have been installed and commissioned and are awaiting data at the Large Hadron Collider. In this article, we describe what factors drove the design and architecture of the systems.


2020 ◽  
Vol 245 ◽  
pp. 07044
Author(s):  
Frank Berghaus ◽  
Franco Brasolin ◽  
Alessandro Di Girolamo ◽  
Marcus Ebert ◽  
Colin Roy Leavett-Brown ◽  
...  

The Simulation at Point1 (Sim@P1) project was built in 2013 to take advantage of the ATLAS Trigger and Data Acquisition High Level Trigger (HLT) farm. The HLT farm provides around 100,000 cores, which are critical to ATLAS during data taking. When ATLAS is not recording data, such as the long shutdowns of the LHC, this large compute resource is used to generate and process simulation data for the experiment. At the beginning of the second long shutdown of the large hadron collider, the HLT farm including the Sim@P1 infrastructure was upgraded. Previous papers emphasised the need for simple, reliable, and efficient tools and assessed various options to quickly switch between data acquisition operation and offline processing. In this contribution, we describe the new mechanisms put in place for the opportunistic exploitation of the HLT farm for offline processing and give the results from the first months of operation.


2015 ◽  
Vol 13 (4) ◽  
pp. 511-521 ◽  
Author(s):  
M. Battistin ◽  
S. Berry ◽  
A. Bitadze ◽  
P. Bonneau ◽  
J. Botelho-Direito ◽  
...  

Abstract The silicon tracker of the ATLAS experiment at CERN Large Hadron Collider will operate around –15°C to minimize the effects of radiation damage. The present cooling system is based on a conventional evaporative circuit, removing around 60 kW of heat dissipated by the silicon sensors and their local electronics. The compressors in the present circuit have proved less reliable than originally hoped, and will be replaced with a thermosiphon. The working principle of the thermosiphon uses gravity to circulate the coolant without any mechanical components (compressors or pumps) in the primary coolant circuit. The fluorocarbon coolant will be condensed at a temperature and pressure lower than those in the on-detector evaporators, but at a higher altitude, taking advantage of the 92 m height difference between the underground experiment and the services located on the surface. An extensive campaign of tests, detailed in this paper, was performed using two small-scale thermosiphon systems. These tests confirmed the design specifications of the full-scale plant and demonstrated operation over the temperature range required for ATLAS. During the testing phase the system has demonstrated unattended long-term stable running over a period of several weeks. The commissioning of the full scale thermosiphon is ongoing, with full operation planned for late 2015.


Sign in / Sign up

Export Citation Format

Share Document