silicon sensors
Recently Published Documents


TOTAL DOCUMENTS

365
(FIVE YEARS 65)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol 17 (01) ◽  
pp. C01022
Author(s):  
T. Croci ◽  
A. Morozzi ◽  
F. Moscatelli ◽  
V. Sola ◽  
G. Borghi ◽  
...  

Abstract In this work, the results of Technology-CAD (TCAD) device-level simulations of non-irradiated and irradiated Low-Gain Avalanche Diode (LGAD) detectors and their validation against experimental data will be presented. Thanks to the intrinsic multiplication of the charge within these silicon sensors, it is possible to improve the signal to noise ratio thus limiting its drastic reduction with fluence, as it happens instead for standard silicon detectors. Therefore, special attention has been devoted to the choice of the avalanche model, which allows the simulation findings to better fit with experimental data. Moreover, a radiation damage model (called “New University of Perugia TCAD model”) has been fully implemented within the simulation environment, to have a predictive insight into the electrical behavior and the charge collection properties of the LGAD detectors, up to the highest particle fluences expected in the future High Energy Physics (HEP) experiments. This numerical model allows to consider the comprehensive bulk and surface damage effects induced by radiation on silicon sensors. By coupling the “New University of Perugia TCAD model” with an analytical model that describes the mechanism of acceptor removal in the multiplication layer, it has been possible to reproduce experimental data with high accuracy, demonstrating the reliability of the simulation framework.


2022 ◽  
Vol 17 (01) ◽  
pp. C01003
Author(s):  
C. Oancea ◽  
C. Bălan ◽  
J. Pivec ◽  
C. Granja ◽  
J. Jakubek ◽  
...  

Abstract This work aims to characterize ultra-high dose rate pulses (UHDpulse) electron beams using the hybrid semiconductor pixel detector. The Timepix3 (TPX3) ASIC chip was used to measure the composition, spatial, time, and spectral characteristics of the secondary radiation fields from pulsed 15–23 MeV electron beams. The challenge is to develop a single compact detector that could extract spectrometric and dosimetric information on such high flux short-pulsed fields. For secondary beam measurements, PMMA plates of 1 and 8 cm thickness were placed in front of the electron beam, with a pulse duration of 3.5 µs. Timepix3 detectors with silicon sensors of 100 and 500 µm thickness were placed on a shifting stage allowing for data acquisition at various lateral positions to the beam axis. The use of the detector in FLEXI configuration enables suitable measurements in-situ and minimal self-shielding. Preliminary results highlight both the technique and the detector’s ability to measure individual UHDpulses of electron beams delivered in short pulses. In addition, the use of the two signal chains per-pixel enables the estimation of particle flux and the scattered dose rates (DRs) at various distances from the beam core, in mixed radiation fields.


Instruments ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Lucía Castillo García ◽  
Evangelos Leonidas Gkougkousis ◽  
Chiara Grieco ◽  
Sebastian Grinstein

Low Gain Avalanche Detectors (LGADs) are n-on-p silicon sensors with an extra doped p-layer below the n-p junction which provides signal amplification. The moderate gain of these sensors, together with the relatively thin active region, provides excellent timing performance for Minimum Ionizing Particles (MIPs). To mitigate the effect of pile-up during the High-Luminosity Large Hadron Collider (HL-LHC) era, both ATLAS and CMS experiments will install new detectors, the High-Granularity Timing Detector (HGTD) and the End-Cap Timing Layer (ETL), that rely on the LGAD technology. A full characterization of LGAD sensors fabricated by Centro Nacional de Microelectrónica (CNM), before and after neutron irradiation up to 1015 neq/cm2, is presented. Sensors produced in 100 mm Si-on-Si wafers and doped with boron and gallium, and also enriched with carbon, are studied. The results include their electrical characterization (I-V, C-V), bias voltage stability and performance studies with the Transient Current Technique (TCT) and a Sr-90 radioactive source setup.


2021 ◽  
Author(s):  
Gunther Seckmeyer ◽  
Jens Duffert ◽  
Angelika Niedzwiedz ◽  
Riyad Mubarak

<p>PV modules tilted and oriented toward east and west directions gain gradually more importance as an alternative to the presently-preferred south (north in the Southern Hemisphere) orientation and it is shown to become economically superior even under the reimbursement of feed-in tariff (FIT). This is a consequence of the increasing spread between the decreasing costs of self-consumed solar power and the costs for power from the grid. One-minute values of irradiance were measured by silicon sensors at different orientations and tilt angles in Hannover (Germany) over three years. We show that south-oriented collectors give the highest electrical power during the day, whereas combinations of east and west orientations (E-W) result in the highest self-consumption rate (SC), and combinations of southeast and southwest (SE-SW) orientations result in the highest degree of autarky (AD), although they reduce the yearly PV Power by 5–6%. Moreover, the economic analysis of PV systems without FIT shows that the SE-SW and E-W combinations have the lowest electricity cost and they are more beneficial in terms of internal rate of return(IRR),compared to the S orientation at the same tilt. For PV systems with FIT, the S orientation presently provides the highest transfer of money from the supplier. However, as a consequence of the continuing decline of FIT, the economic advantage of S orientation is decreasing. E-W and SE-SW orientations are more beneficial for the owner as soon as FIT decreases to 7 Ct/kWh. East and west orientations of PV modules do not only have benefits for the individual owner but avoid high costs for storing energy—regardless who would own the storage facilities—and by avoiding high noon peaks of solar energy production during sunny periods,which would become an increasing problem for the grid if more solarpower is installed. Furthermore, two types of commonly used PV software (PVSOL and PVsyst) were used to simulate the system performance. The comparison with measurements showed that both PV software underestimate SC and AD for all studied orientations, leading to the conclusion that improvements are necessary in modelling. Such improvements, however, also require a better knowledge of the angular dependence of the spectral radiance under all sky conditions. Since the spectral radiance is complex and usually changes within seconds, we developed a new instrument capable of measuring the spectra of sky radiance in more than 100 directions within one second. First measurements with this novel instrument are shown. </p>


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8029
Author(s):  
Bobae Kim ◽  
Uk-Won Nam ◽  
Sunghwan Kim ◽  
Sukwon Youn ◽  
Won-Kee Park ◽  
...  

A lunar vehicle radiation dosimeter (LVRAD) has been proposed for studying the radiation environment on the lunar surface and evaluating its impact on human health. The LVRAD payload comprises four systems: a particle dosimeter and spectrometer (PDS), a tissue-equivalent dosimeter, a fast neutron spectrometer, and an epithermal neutron spectrometer. A silicon photodiode sensor with compact readout electronics was proposed for the PDS. The PDS system aims to measure protons with 10–100 MeV of energy and assess dose in the lunar space environment. The manufactured silicon photodiode sensor has an effective area of 20 mm × 20 mm and thickness of 650 μm; the electronics consist of an amplifier, analog pulse processor, and a 12-bit analog-to-digital converter for signal readout. We studied the responses of silicon sensors which were manufactured with self-made electronics to gamma rays with a wide range of energies and proton beams.


2021 ◽  
Vol 16 (12) ◽  
pp. C12033
Author(s):  
R. Koppenhöfer ◽  
T. Barvich ◽  
J. Braach ◽  
A. Dierlamm ◽  
U. Husemann ◽  
...  

Abstract The start of the High-Luminosity LHC (HL-LHC) in 2027 requires upgrades to the Compact Muon Solenoid (CMS) experiment. In the scope of the upgrade program the complete silicon tracking detector will be replaced. The new CMS Tracker will be equipped with silicon pixel detectors in the inner layers closest to the interaction point and silicon strip detectors in the outer layers. The new CMS Outer Tracker will consist of two different kinds of detector modules called PS and 2S modules. Each module will be made of two parallel silicon sensors (a macro-pixel sensor and a strip sensor for the PS modules and two strip sensors for the 2S modules). Combining the hit information of both sensor layers, it is possible to estimate the transverse momentum of particles in the magnetic field of 3.8 T at the full bunch-crossing rate of 40 MHz directly on the module. This information will be used as an input for the first trigger stage of CMS. It is necessary to validate the Outer Tracker module functionality before installing the modules in the CMS experiment. Besides laboratory-based tests several 2S module prototypes have been studied at test beam facilities at CERN, DESY and FNAL. This article concentrates on the beam tests at DESY during which the functionality of the module concept was investigated using the full final readout chain for the first time. Additionally the performance of a 2S module assembled with irradiated sensors was studied. By choosing an irradiation fluence expected for 2S modules at the end of HL-LHC operation, it was possible to investigate the particle detection efficiency and study the trigger capabilities of the module at the beginning and end of the runtime of the CMS experiment.


2021 ◽  
Vol 16 (12) ◽  
pp. C12006
Author(s):  
Y. Allard ◽  
G. De Lentdecker ◽  
D. Hohov ◽  
F. Robert ◽  
A. Safa ◽  
...  

Abstract To build silicon trackers of modern and future high-luminosity collider experiments, thousands of silicon strip modules have to be produced and tested. The modules in new trackers must reliably work usually during 5–10 years or more under harsh irradiation conditions, as it will be impossible to replace a failing module once installed inside the detector. It means that reliable and rigorous testing of strip modules and its components is mandatory. To sustain the production throughput we should be able to test several modules in parallel. For this reason a fast, reliable, scalable and cost effective production QC test bench has to be designed and implemented. For the CV and IV measurements of sensors and modules we are developing a low-cost (less than 500 €) integrated electronic board which will be scaled up to ten channels to measure DUTs in parallel. In the current work the design of the IV/CV board and the calibration procedure to increase the accuracy of the current and capacitance measurements, for which a special calibration dipole board based on tight tolerance capacitors and resistors has been designed, as well as future development plans are described.


2021 ◽  
Vol 16 (11) ◽  
pp. P11028
Author(s):  
W. Adam ◽  
T. Bergauer ◽  
D. Blöch ◽  
M. Dragicevic ◽  
R. Frühwirth ◽  
...  

Abstract During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m2 of silicon sensors was to compare sensors of baseline thickness (about 300 μm) to thinned sensors (about 240 μm), which promised several benefits at high radiation levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 × 1015 neq/cm2. The measurement results demonstrate that sensors with about 300 μm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker.


Author(s):  
Siim Heinsalu ◽  
Yuichi Matsushima ◽  
Hiroshi Ishikawa ◽  
Katsuyuki Utaka

Sign in / Sign up

Export Citation Format

Share Document