scholarly journals The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider

2015 ◽  
Vol 13 (4) ◽  
pp. 511-521 ◽  
Author(s):  
M. Battistin ◽  
S. Berry ◽  
A. Bitadze ◽  
P. Bonneau ◽  
J. Botelho-Direito ◽  
...  

Abstract The silicon tracker of the ATLAS experiment at CERN Large Hadron Collider will operate around –15°C to minimize the effects of radiation damage. The present cooling system is based on a conventional evaporative circuit, removing around 60 kW of heat dissipated by the silicon sensors and their local electronics. The compressors in the present circuit have proved less reliable than originally hoped, and will be replaced with a thermosiphon. The working principle of the thermosiphon uses gravity to circulate the coolant without any mechanical components (compressors or pumps) in the primary coolant circuit. The fluorocarbon coolant will be condensed at a temperature and pressure lower than those in the on-detector evaporators, but at a higher altitude, taking advantage of the 92 m height difference between the underground experiment and the services located on the surface. An extensive campaign of tests, detailed in this paper, was performed using two small-scale thermosiphon systems. These tests confirmed the design specifications of the full-scale plant and demonstrated operation over the temperature range required for ATLAS. During the testing phase the system has demonstrated unattended long-term stable running over a period of several weeks. The commissioning of the full scale thermosiphon is ongoing, with full operation planned for late 2015.

2013 ◽  
Vol 22 (07) ◽  
pp. 1330015
Author(s):  
◽  
DOMIZIA ORESTANO

This document presents a brief overview of some of the experimental techniques employed by the ATLAS experiment at the CERN Large Hadron Collider (LHC) in the search for the Higgs boson predicted by the standard model (SM) of particle physics. The data and the statistical analyses that allowed in July 2012, only few days before this presentation at the Marcel Grossman Meeting, to firmly establish the observation of a new particle are described. The additional studies needed to check the consistency between the newly discovered particle and the Higgs boson are also discussed.


2015 ◽  
Vol 39 ◽  
pp. 1560091 ◽  
Author(s):  
Domizia Orestano

This report presents the investigations on the recently discovered scalar boson by the ATLAS experiment at the CERN Large Hadron Collider. The latest results fully exploit the data collected during LHC Run 1 to measure the properties of the new boson and within the current sensitivity confirm the identification of this particle with the Higgs boson of the Standard Model.


2008 ◽  
Vol 3 (08) ◽  
pp. S08003-S08003 ◽  
Author(s):  
The ATLAS Collaboration ◽  
G Aad ◽  
E Abat ◽  
J Abdallah ◽  
A A Abdelalim ◽  
...  

2017 ◽  
Vol 96 (6) ◽  
Author(s):  
Caio A. G. Prado ◽  
Jacquelyn Noronha-Hostler ◽  
Roland Katz ◽  
Alexandre A. P. Suaide ◽  
Jorge Noronha ◽  
...  

2016 ◽  
Vol 93 (5) ◽  
Author(s):  
J. Adam ◽  
D. Adamová ◽  
M. M. Aggarwal ◽  
G. Aglieri Rinella ◽  
M. Agnello ◽  
...  

2021 ◽  
Author(s):  
S. J. van der Spuy ◽  
D. N. J. Els ◽  
L. Tieghi ◽  
G. Delibra ◽  
A. Corsini ◽  
...  

Abstract The MinWaterCSP project was defined with the aim of reducing the cooling system water consumption and auxiliary power consumption of concentrating solar power (CSP) plants. A full-scale, 24 ft (7.315 m) diameter model of the M-fan was subsequently installed in the Min WaterCSP cooling system test facility, located at Stellenbosch University. The test facility was equipped with an in-line torque arm and speed transducer to measure the power transferred to the fan rotor, as well as a set of rotating vane anemometers upstream of the fan rotor to measure the air volume flow rate passing through the fan. The measured results were compared to those obtained on the 1.542 m diameter ISO 5801 test facility using the fan scaling laws. The comparison showed that the fan power values correlated within +/− 7% to those of the small-scale fan, but at a 1° higher blade setting angle for the full-scale fan. To correlate the expected fan static pressure rise, a CFD analysis of the 24 ft (7.315 m) diameter fan installation was performed. The predicted fan static pressure rise values from the CFD analysis were compared to those measured on the 1.542 m ISO test facility, for the same fan. The simulation made use of an actuator disc model to represent the effect of the fan. The results showed that the predicted results for fan static pressure rise of the installed 24 ft (7.315 m) diameter fan correlated closely (smaller than 1% difference) to those of the 1.542 m diameter fan at its design flowrate but, once again, at approximately 1° higher blade setting angle.


Sign in / Sign up

Export Citation Format

Share Document