test beam
Recently Published Documents


TOTAL DOCUMENTS

470
(FIVE YEARS 78)

H-INDEX

16
(FIVE YEARS 4)

2022 ◽  
Vol 2148 (1) ◽  
pp. 012034
Author(s):  
Yihong Hong

Abstract Reinforced concrete structure is widely used in building structure because of its unique physical and mechanic properties, but with the increase of service life, there will be different degrees of damage in the structures. In this paper, combined with the test beam, a model of reinforced concrete beam strengthened with CFRP is established by Using ANSYS finite element software, nonlinear finite element analysis is carried out on the whole process of yield, cracking and destruction of the test beam under secondary load, while different working states of CFRP sheets were simulated by the life and death unit. The results show that the bending performance of reinforced concrete (RC) beams strengthened with CFRP can be predicted by selecting the finite element analysis model rationally.


2021 ◽  
Vol 16 (12) ◽  
pp. C12033
Author(s):  
R. Koppenhöfer ◽  
T. Barvich ◽  
J. Braach ◽  
A. Dierlamm ◽  
U. Husemann ◽  
...  

Abstract The start of the High-Luminosity LHC (HL-LHC) in 2027 requires upgrades to the Compact Muon Solenoid (CMS) experiment. In the scope of the upgrade program the complete silicon tracking detector will be replaced. The new CMS Tracker will be equipped with silicon pixel detectors in the inner layers closest to the interaction point and silicon strip detectors in the outer layers. The new CMS Outer Tracker will consist of two different kinds of detector modules called PS and 2S modules. Each module will be made of two parallel silicon sensors (a macro-pixel sensor and a strip sensor for the PS modules and two strip sensors for the 2S modules). Combining the hit information of both sensor layers, it is possible to estimate the transverse momentum of particles in the magnetic field of 3.8 T at the full bunch-crossing rate of 40 MHz directly on the module. This information will be used as an input for the first trigger stage of CMS. It is necessary to validate the Outer Tracker module functionality before installing the modules in the CMS experiment. Besides laboratory-based tests several 2S module prototypes have been studied at test beam facilities at CERN, DESY and FNAL. This article concentrates on the beam tests at DESY during which the functionality of the module concept was investigated using the full final readout chain for the first time. Additionally the performance of a 2S module assembled with irradiated sensors was studied. By choosing an irradiation fluence expected for 2S modules at the end of HL-LHC operation, it was possible to investigate the particle detection efficiency and study the trigger capabilities of the module at the beginning and end of the runtime of the CMS experiment.


2021 ◽  
Vol 8 ◽  
pp. 5-8
Author(s):  
J. D. Yau ◽  
S. Urushadze

In this article, an adjustable frequency device based on curved beam theory is designed to control vertical stiffness of an instrumented vehicle that it can detect dynamic data when moving on a test beam for frequency measurement. The adjustable frequency device consists of a set of two-layer cantilever semi-circular thin-beams to support a lumped mass for vibrations, in which a rotatable U-frame is used to change its subtended angle for adjustment of the supporting stiffness and corresponding vertical frequencies of the vehicle. Based on curved beam theory, an analytical frequency equation of the single-degree-of-freedom test vehicle was derived and applied to mobile frequency measurement of a simple beam. To determine the sectional rigidity of the semi-circular thin-beams, both theoretical and experimental studies were be carried out in the ITAM laboratory of the Academy of Science in Czech. The analytical and experimental results indicated that the present semi-circular beam model with guided ends is applicable to prediction of natural frequencies of the test vehicle considering different supporting stiffness


2021 ◽  
Author(s):  
Andrey Vyacheslavovich Garipov ◽  
Andrey Aleksandrovich Rebrikov ◽  
Aydar Ramilevich Galimkhanov ◽  
Andrey Valerievich Mikhaylov ◽  
Almaz Sadrikhanovich Khalilov ◽  
...  

Abstract This article is a description of a comprehensive engineering approach to new designs of PDC (Polycrystalline Diamond Compact) Bits and bottomhole equipment for efficient horizontal wells drilling in the Yamal-Nenets Autonomous Okrug (YNAO) fields with Rotary Steerable Systems (RSS) Point the Bit (PTB) type. The paper represents an analysis of the efficiency of drilling rocks of various hardness depending on the bits, the bottom hole assembly (BHA), and type of vibrations. In the Yamal region fields a main constraint of sub horizontal sections drilling performance for liner run in hole is the occurrence of vibrations. The predominant vibration types are Stick and Slip (S&S) and High Frequency Torsional Oscillations (HFTO). These types of vibrations often had to be reduced by limiting drilling regime (weight on bit (WOB), drill pipe (DP) RPM, and flow rate), which directly affected on the rate of penetration (ROP). To find solutions to this problem for drilling performance improvement, geological and geomechanically modeling of rock properties and an analysis of burst-files of vibrations (modeled in specialized software) were carried out based on downhole data. The studies have found key factors that cause the high vibration impact and reasons for premature wear of the PDC bits, which served as a basis for identifying the shortcomings of previous bit designs. Test beam experiments were also performed to assess the bits wear while drill-out of the casing accessories. The results formed the basis for development of new PDC bits designs using specialized software. As an output new 155.6/152.4 mm bits designs with an innovative cutting structure that considers the geological features and technical aspects of drilling liner sections in YNAO fields were manufactured. The new bit designs have significantly reduced vibration levels, improved ROP performance in the liner section using RSS PTB, and decreased the overall well construction time. These solutions open wide opportunities for their further implementation on other projects both in Russia and in other CIS countries.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Dong Liang ◽  
Jing Liu ◽  
Lida Wang ◽  
Chenjing Liu ◽  
Jia Liu

Information such as cracks and deflections is the important basis for structural safety. Existing methods have not achieved simultaneous detection. In most existing computer vision measurement systems, the view is fixed due to the fixed position of the camera. Thus, it is difficult to obtain the structures’ overall crack and deflection information. An automatic response measurement method is proposed in this study including ( 1 ) continuous image acquisition and signal transmission system based on self-walking bracket and Internet of Things (IoT), ( 2 ) an image splicing method based on feature matching, and ( 3 ) a crack and deflection measurement method. The self-walking bracket allows the industrial camera to move at a fixed distance to obtain the continuous image of the beam. Next, the spliced image is obtained through the PCA-SIFT method with a screening mechanism. The cracks’ information is acquired by the dual network model. The simplified AKAZE feature detection algorithm and the modified RANSAC are used to track the natural features of the structures. The curve fitting is performed to obtain the deflection curve of the beam under different loads. Experimental results show that the method can directly reflect the crack and deflection information of the beam. The average deviation of width is 11.76%, average deviation of length is 8.18%, and the average deformation deviation is 4.50%, which verifies the practicability of the method and shows great potential to apply it in actual structures.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1666
Author(s):  
Tao Yu ◽  
Quansheng Sun ◽  
Chunwei Li ◽  
Yancheng Liu

Carbon fiber-reinforced polymer (CFRP) reinforcement technology has been widely used in the reinforcement of reinforced concrete (RC) beams. At this stage, high prestressed CFRP board reinforcement is often used in actual reinforcement. However, most reinforced bridges are designed for a long time, and the design value of the protective layer is low, and it is impossible to achieve a large prestressed tension. Therefore, this paper proposes the reverse-arch method to paste the CFRP board and apply low prestress to strengthen the symmetrical RC beam. Through the three-point forward loading test, the cracking load, ultimate load, crack width, mid-span deflection, strain and failure mode of a reverse-arch method-pasted CFRP board-reinforced beam, a directly pasted CFRP board-reinforced beam and an unreinforced beam are compared. The results show that the load-bearing capacity and stiffness of the test beam can be improved by pasting CFRP plates with anti-arch method, but the ductility of the test beam is reduced. Compared with the unreinforced beam, the maximum cracking load and ultimate load are increased by 56% and 63% respectively. The reverse-arch method can produce low prestress, improve the stiffness and bearing capacity of members, and has a good prospect of engineering application.


2021 ◽  
Vol 16 (09) ◽  
pp. P09028
Author(s):  
D. Brundu ◽  
A. Cardini ◽  
G.M. Cossu ◽  
G.-F. Dalla Betta ◽  
M. Garau ◽  
...  
Keyword(s):  

2021 ◽  
Vol 16 (08) ◽  
pp. P08041
Author(s):  
J. Gu ◽  
H. Liu ◽  
X. Huang ◽  
B. Huang ◽  
M. Xu ◽  
...  

2021 ◽  
pp. 136943322110339
Author(s):  
Jucan Dong ◽  
Yiyan Chen ◽  
Qingxiong Wu ◽  
Aoxiang Hu ◽  
Ruijuan Jiang ◽  
...  

A new type of composite structure, the composite box girder with corrugated steel webs (CSWs) and trusses, is proposed recently. In order to investigate the structural behavior under positive and negative bending moments, flexural tests of the continuous girder were carried out, and the failure modes, deformation patterns, strain distribution, and development of the concrete cracks were investigated. Finite element analysis was conducted to investigate the effect of the range of concrete in the steel tube and the thickness of CSWs on the flexural behavior. The experimental and numerical results show that the test beam has a good ductility and integrity under flexural load. The contribution of CSWs to the flexural bearing capacity is very small and can be neglected. Besides, the plane section assumption is still valid when only top concrete slab and bottom steel tubes are concerned. The concrete filled in bottom steel tubes increases the stiffness and the bearing capacity of the girder. Equations to calculate the flexural bearing capacity under positive and negative bending moments were put forward and then verified with experimental results.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yongguang Wang

During the service period of a prestressed concrete bridge, as the number of cyclic loads increases, cumulative fatigue damage and prestress loss will occur inside the structure, which will affect the safety, durability, and service life of the structure. Based on this, this paper studies the loss of bridge prestress under fatigue load. First, the relationship between the prestress loss of the prestressed tendons and the residual deflection of the test beam is analyzed. Based on the test results and the main influencing factors of fatigue and creep, a concrete fatigue and creep calculation model is proposed; then, based on the static cracking check calculation method and POS-BP neural network algorithm, a prestressed concrete beam fatigue cracking check model under repeated loads is proposed. Finally, the mechanical performance of the prestressed concrete beam after fatigue loading is analyzed, and the influence of the fatigue load on the bearing capacity of the prestressed concrete beam is explored. The results show that the bridge prestress loss characterization model based on the POS-BP neural network algorithm has the advantages of high calculation efficiency and strong applicability.


Sign in / Sign up

Export Citation Format

Share Document