scholarly journals Estimating stand biomass in the Tamaulipan thornscrub of northeastern Mexico

2002 ◽  
Vol 59 (8) ◽  
pp. 813-821 ◽  
Author(s):  
Jos� N�var ◽  
Eduardo M�ndez ◽  
Virginia Dale
2006 ◽  
Vol 221 (1-3) ◽  
pp. 133-139 ◽  
Author(s):  
Enrique Jurado ◽  
Jaime F. García ◽  
Joel Flores ◽  
Eduardo Estrada

1990 ◽  
Vol 1 (4) ◽  
pp. 529-538 ◽  
Author(s):  
N. Reid ◽  
Smith D.M. Stafford ◽  
P. Beyer-Miinzel ◽  
J. Marroquin

Flora ◽  
2021 ◽  
pp. 151965
Author(s):  
Cristian A. Martínez-Adriano ◽  
Enrique Jurado ◽  
Joel Flores ◽  
Eduardo Estrada-Castillón ◽  
Humberto González-Rodríguez

2019 ◽  
Vol 97 (3) ◽  
pp. 291
Author(s):  
Rebeca Zavala González ◽  
Israel Cantú-Silva ◽  
Laura Sánchez-Castillo ◽  
Humberto González-Rodríguez ◽  
Tetsuya Kubota ◽  
...  

<p><strong>Background:</strong>  Due to causes such as small-scale earthquakes or the increasing amount of heavy rainfall extreme events, many slopes are potentially unstable. Soil bioengineering is an effective tool for treatment of a variety of unstable and/ or eroding sites.</p><p><strong>Question and hypothesis: </strong>Maximum force to breakage of the roots is influenced by diameter.</p><p>Tensile strength and modulus of elasticity of roots is different between species of the two different ecosystems: Tamaulipan thornscrub and Pine-oak forest.</p><p><strong>Studied Species:</strong> Site 1: <em>Acacia berlandieri, Cordia boissieri, Acacia rigidula, Havardia pallens,</em> and<em> Acacia farnesiana</em>;<em> </em>Site 2:<em> Quercus rysophylla, Pinus pseudostrobus, Quercus canbyi, Quercus polymorpha, </em>and<em> Arbutus xalapensis</em>.</p><p class="Sous-auteur1"><strong>Study area and dates: </strong>Tamaulipan thornscrub in Northeastern Mexico (Linares, Nuevo León), from May to July 2016; and Pine-Oak forest in Sierra Madre Oriental, Iturbide, Nuevo Leon, from September to October 2016.</p><p><strong>Methods:</strong> The species considered were selected based on their native characteristics (natural distribution, abundance in the area and widespread existence on slopes). The tests were conducted with the Universal Testing Machine Shimadzu type SLFL-100KN.</p><p><strong>Results:</strong>  The relationships between tensile strength (T<sub>s</sub>) and diameters of the studied species, and root diameters and modulus of elasticity (E<sub>root</sub>) were negative.</p><p>The minimum and maximum values of tensile strength varied from 1.86 N / mm<sup>2</sup> in <em>C. boissieri</em> to 44.65 N/mm<sup>2</sup> in <em>A. rigidula</em>.</p><p><strong>Conclusions: </strong><em>Acacia berlandieri</em> showed the highest tensile strength among all species of the two ecosystems, in the diametric group I (0.1 to 2.9 mm).</p>


1997 ◽  
Vol 18 (2) ◽  
pp. 105-120
Author(s):  
Solveig A. Turpin ◽  
Herbert H. Eling ◽  
Moisés Valadez Moreno

The recent discovery of a pit house village, 40 km northwest of Monterrey, challenges the conventional view of inland northeastern Mexico as the domain of purely nomadic hunters and gatherers throughout prehistory. Las Casitas consists of fifty-three subterranean rooms and forty-eight smaller depressions aligned in three slightly arcuate tiers in a small valley adjacent to Boca de Potrerillos, an extremely large open campsite and petroglyph complex that is now an archeological park. Other features of the site are some 325 hearths that surround the depressions and a very limited artifact assemblage numbering only thirty-seven items. Two hearths produced radiocarbon samples that date site occupancy to approximately a.d. 1450, just prior to the arrival of the Spanish in the New World. Las Casitas provides the first evidence of semi-sedentary, surplus producing populations in central northeastern Mexico.


Sign in / Sign up

Export Citation Format

Share Document