scholarly journals Nonlinear Static Analysis and Structural Optimization of Rigid Clamp Band Connection Device between Launch Vehicle and Satellite

Author(s):  
Xin Guo ◽  
Shiyao Zhu ◽  
Guanri Liu ◽  
Bin Yu ◽  
Qiaofei Zhang ◽  
...  

The Rigid Clamp Band Connection Device (RCBCD) is a novel satellite-rocket connection method adapted to the heavy lift trend of the launch vehicle. The static analysis model for the Rigid Clamp Band (RCB) and the Docking Ring (DR) under preloading state is established, and the structural strength and connection stiffness characteristics under the axial loading are analyzed, and the axisymmetric equivalent and parametric modeling techniques are combined to optimize the section shape parameter, which improves the overall connection performance. The results show that the structural stress concentrated on the "line-to-face" contact position between RCB and DR. Increasing the axial dimension of RCB, reducing the V-type angle and deepening the occlusion depth of RCB and DR can effectively improve the connection rigidity of RCB. By optimizing the section shape, the connection performance of RCBCD can be improved by above 70% under the structural strength and mass constraints.

2017 ◽  
Vol 755 ◽  
pp. 170-180
Author(s):  
Natalino Gattesco ◽  
Ingrid Boem

A method for a simplified modeling of post-and-beam timber buildings braced with nailed shear walls, useful for seismic design purposes, is presented and discussed in the paper. This strategy is based on the schematization of the vertical diaphragms through equivalent diagonal springs with elastic-plastic behavior and allows the assessment of the resisting ground acceleration by performing nonlinear static analysis; the Capacity Spectrum method based on equivalent viscous damping was applied. This nonlinear procedure constitutes a reliable and simple alternative to the linear static analysis using the behavior factor q. The procedures to determine the characteristics of the equivalent elements (stiffness and load-carrying capacity) are based on analytical evaluations, starting from the actual characteristic of shear walls. A comparison between the results of numerical simulation based of more refined and complex models, previously presented by the authors, and this time-reducing, simplified analysis proved the good reliability of the method.


Sign in / Sign up

Export Citation Format

Share Document