scholarly journals Hybrid high-order method for singularly perturbed fourth-order problems on curved domains

Author(s):  
Zhaonan Dong ◽  
Alexandre Ern

We propose a novel hybrid high-order method (HHO) to approximate singularly perturbed fourth-order PDEs on domains with a possibly curved boundary. The two key ideas in devising the method are the use of a Nitsche-type boundary penalty technique to weakly enforce the boundary conditions and a scaling of the weighting parameter in the stabilisation operator that compares the singular perturbation parameter to the square of the local mesh size. With these ideas in hand, we derive stability and optimal error estimates over the whole range of values for the singular perturbation parameter, including the zero value for which a second-order elliptic problem is recovered. Numerical experiments illustrate the theoretical analysis.

Author(s):  
Andreas Dedner ◽  
Alice Hodson

Abstract We present a class of nonconforming virtual element methods for general fourth-order partial differential equations in two dimensions. We develop a generic approach for constructing the necessary projection operators and virtual element spaces. Optimal error estimates in the energy norm are provided for general linear fourth-order problems with varying coefficients. We also discuss fourth-order perturbation problems and present a novel nonconforming scheme which is uniformly convergent with respect to the perturbation parameter without requiring an enlargement of the space. Numerical tests are carried out to verify the theoretical results. We conclude with a brief discussion on how our approach can easily be applied to nonlinear fourth-order problems.


Author(s):  
Ronan Guenanff ◽  
Pierre Sagaut ◽  
Eric Manoha ◽  
Marc Terracol ◽  
Roger Lewandowsky

2017 ◽  
Vol 17 (2) ◽  
pp. 337-349 ◽  
Author(s):  
Christos Xenophontos

AbstractWe consider fourth order singularly perturbed problems in one-dimension and the approximation of their solution by the h version of the finite element method. In particular, we use piecewise Hermite polynomials of degree ${p\geq 3}$ defined on an exponentially graded mesh. We show that the method converges uniformly, with respect to the singular perturbation parameter, at the optimal rate when the error is measured in both the energy norm and a stronger, ‘balanced’ norm. Finally, we illustrate our theoretical findings through numerical computations, including a comparison with another scheme from the literature.


Author(s):  
R. Guénanff ◽  
P. Sagaut ◽  
E. Manoha ◽  
R. Lewandowski

2018 ◽  
Vol 52 (5) ◽  
pp. 1981-2001 ◽  
Author(s):  
Yuan Bao ◽  
Zhaoliang Meng ◽  
Zhongxuan Luo

In this paper, aC0nonconforming quadrilateral element is proposed to solve the fourth-order elliptic singular perturbation problem. For each convex quadrilateralQ, the shape function space is the union ofS21(Q*) and a bubble space. The degrees of freedom are defined by the values at vertices and midpoints on the edges, and the mean values of integrals of normal derivatives over edges. The local basis functions of our element can be expressed explicitly by a new reference quadrilateral rather than by solving a linear system. It is shown that the method converges uniformly in the perturbation parameter. Lastly, numerical tests verify the convergence analysis.


Sign in / Sign up

Export Citation Format

Share Document