scholarly journals Zhou Method for the Solutions of System of Proportional Delay Differential Equations

2017 ◽  
Vol 125 ◽  
pp. 02001 ◽  
Author(s):  
S.O. Edeki ◽  
G.O. Akinlabi ◽  
Nikolay Hinov
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
M. Mustafa Bahşi ◽  
Mehmet Çevik

The pantograph equation is a special type of functional differential equations with proportional delay. The present study introduces a compound technique incorporating the perturbation method with an iteration algorithm to solve numerically the delay differential equations of pantograph type. We put forward two types of algorithms, depending upon the order of derivatives in the Taylor series expansion. The crucial convenience of this method when compared with other perturbation methods is that this method does not require a small perturbation parameter. Furthermore, a relatively fast convergence of the iterations to the exact solutions and more accurate results can be achieved. Several illustrative examples are given to demonstrate the efficiency and reliability of the technique, even for nonlinear cases.


Author(s):  
Mo Faheem ◽  
Akmal Raza ◽  
Arshad Khan

Abstract In this paper, we proposed wavelet based collocation methods for solving neutral delay differential equations. We use Legendre wavelet, Hermite wavelet, Chebyshev wavelet and Laguerre wavelet to solve the neutral delay differential equations numerically. We solved five linear and one nonlinear problem to demonstrate the accuracy of wavelet series solution. Wavelet series solution converges fast and gives more accurate results in comparison to other methods present in literature. We compare our results with Runge–Kutta-type methods by Wang et al. (Stability of continuous Runge–Kutta-type methods for nonlinear neutral delay-differential equations,” Appl. Math. Model, vol. 33, no. 8, pp. 3319–3329, 2009) and one-leg θ methods by Wang et al. (Stability of one-leg θ method for nonlinear neutral differential equations with proportional delay,” Appl. Math. Comput., vol. 213, no. 1, pp. 177–183, 2009) and observe that our results are more accurate.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3157-3172
Author(s):  
Mujahid Abbas ◽  
Bahru Leyew ◽  
Safeer Khan

In this paper, the concept of a new ?-generalized quasi metric space is introduced. A number of well-known quasi metric spaces are retrieved from ?-generalized quasi metric space. Some general fixed point theorems in a ?-generalized quasi metric spaces are proved, which generalize, modify and unify some existing fixed point theorems in the literature. We also give applications of our results to obtain fixed points for contraction mappings in the domain of words and to prove the existence of periodic solutions of delay differential equations.


Sign in / Sign up

Export Citation Format

Share Document