scholarly journals Optimize the Rolling Process Parameters for Material AA1100 using Metal Forming Simulation

2018 ◽  
Vol 144 ◽  
pp. 03005
Author(s):  
T. S. Hemanth ◽  
Y. Arunkumar ◽  
M. S. Srinath.

Metal forming plays a very important role in the manufacturing. Simulation of manufacturing process aids in the improvement of quality, reduce energy and resource consumption and helps in visualization of the process. The design of experiment helps in optimization of the parameters in any processes. In this paper, Taguchi optimization technique is used to predict the best results for the given inputs such as roller diameter, friction value, velocity of the rollers and percentage reduction to the forming process and get the optimized values for spread, hardness, effective stress, power required, strain rate and torque using the manufacturing simulation software. It is found that the important parameter is percentage reduction affecting the effective stress. Optimal parameters with desirability value of 0.87 have been obtained.

Author(s):  
Suhui Wang ◽  
Chunlei Xie ◽  
Le Ye ◽  
Xin Wu

Under thermally activated deformation conditions many engineering metals (steels, aluminum and magnesium alloys) exhibit much enhanced formability; thus, thermal forming has received increasing interests by automotive industries. The thermally activated material constitutive behaviors are not only strain dependent, but also strain rate and temperature dependent, and it is sensitive to in-situ microstructure evolution. In addition, non-steady-state deformation at a high strain rate (in the order of 10−2s−1 or above) introduces additional challenges in forming simulation. In this case, von Mises based macroscopic plasticity are often not sufficient to describe material behaviors with complex thermomechanical history. In this paper, the rate-dependent crystal plasticity model [1] was applied to the high temperature and high strain rate deformation that is dominated by dislocation creep. A user material subroutine was developed and used for FEA metal forming simulation using commercial ABAQUS/Dynamic code. In the simulation, material behavior was computed based on crystal plasticity at each strain increment without using von-Mises equation or a look-up table of material testing data. By inputting different slip systems or their combinations, and by matching the predicted crystallographic textures with experimentally obtained ones, the active slip systems responsible for the deformation was identified. Then, the material parameters were best fitted to the tensile curves obtained at various strain rates and temperatures. The model was applied for more complex multi-axial metal forming processes. The material behavior, along with its crystallographic texture development, was obtained and validated. As a demonstration, this paper also provides an analysis of a newly developed thrmal forming process [2] with this meso-scale crystal plasticity approach. This forming process involves diameter expansion of a tubular workpiece under combined internal pressure and axial loading and at elevated temperatures.


2010 ◽  
Vol 44-47 ◽  
pp. 2837-2841 ◽  
Author(s):  
Ying Tong

As one of the principal failures, ductile fracturing restricts metal forming process. Cockcroft-Latham fracture criterion is suited for tenacity fracture in bulk metal-forming simulation. An innovative approach involving physical compression experiments, numerical simulations and mathematic computations provides mutual support to evaluate ductile damage cumulating process and ductile fracture criteria (DFC). The results show that the maximum cumulated damage decreases with strain rate rising, and the incremental ratios, that is damage sensitive rate, vary uniformly during the upsetting processes at different strain rates. The damage sensitive rate decreases rapidly, then it becomes stability in a constant 0.11 after true strain -0.85. The true strain -0.85 was assumed as the fracture strain, and the DFC of 6061-T6 aluminum alloy is almost a constant 0.2. According to DFC, the exact fracture moment and position during various forming processes will be predicted conveniently.


2012 ◽  
Vol 463-464 ◽  
pp. 1047-1051
Author(s):  
M. Rahafrooz ◽  
M. Sanjari ◽  
M. Moradi ◽  
Danial Ghodsiyeh

The Continuum Damage Mechanics is a branch of applied mechanics that used to predict the initiation of cracks in metal forming process. In this article, damage definition and ductile damage model are explained, and also ductile damage model is applied to predict initiation of fracture in gas metal forming process with ABAQUS/EXPLICIT simulation. In this method instead of punch, the force is applied by air pressure. In this study, first the ductile damage criterion and its relations are taken into account and, subsequently, the process of gas-aid formation process is put into consideration and ductile damage model for prediction of rupture area is simulated using ABAQUS simulation software. Eventually, the process of formation via gas on the aluminum with total thickness of 0.24 [mm] was experimentally investigated and the results acquired from experiment were compared with relating simulations. The effect of various parameters such as radius of edge matrix, gas pressure and blank temperature has been evaluated. Simulation was compared with experimental results and good agreement was observed.


Author(s):  
A.V. Vlasov ◽  
D.V. Krivenko ◽  
S.A. Stebunov ◽  
N.V. Biba ◽  
A.M. Dyuzhev

The isothermal surfaces method for preform design is proposed. The procedure for determining of the preform shape is given. The features in using of the method for forgings with various shapes are considered. The method is illustrated by industrial examples. The design algorithm uses the QForm metal forming simulation software to build isothermal surfaces and check the quality of the designed die geometry by finite element modeling, as well as specially developed version of the QFormDirect CAD based on SpaceClaimтм.


2012 ◽  
Vol 271-272 ◽  
pp. 406-411 ◽  
Author(s):  
Wen Yu Ma ◽  
Bao Yu Wang ◽  
Jing Zhou ◽  
Qiao Yun Li

The aim of this paper is to determine whether the train axle cross wedge rolling(CWR) using square billet as blank is available or not. Based on numerical simulation software DEFORM-3D, we built the finite element model. And the whole forming process was simulated successfully. The stress and strain distributions of workpiece in the process were analyzed. The effect of forming angle, stretching angle and billet size on rolling force was investigated, then determined the proper process parameters. The differences between the round billet rolling and the square billet rolling were obtained by comparing the tangential, axial and radial forces during the rolling process. The studied results show the availability of using square billet as blank in train axle CWR and provide important realistic meaning and application value.


2010 ◽  
Vol 154-155 ◽  
pp. 1779-1782
Author(s):  
Gui Hua Liu ◽  
Zhi Jiang ◽  
Yi Bian ◽  
Guang Sheng Ren ◽  
Chun Guo Xu

Cross wedge rolling (CWR) technology, which is a new metal forming process to produce stepped shaft in forging industry, has developed rapidly in the last decades. Tool wear is a key factor to influence products’ quality during CWR process in practice. Basing on the analysis of characteristic of the tool wear, the similar outline dimension of the worn tool in service is obtained by blocking up the end of the tool. A series of experiments are completed to research the influence of the tool wear on the center defects of the workpiece, and the available method to repair the worn tools is brought forward.


2015 ◽  
Vol 60 (2) ◽  
pp. 801-807 ◽  
Author(s):  
A. Tofil ◽  
J. Tomczak ◽  
T. Bulzak

Abstract The paper presents a selection of numerical and theoretical results of the cross wedge rolling process for producing stepped shafts made of aluminum alloy 6061. The numerical modeling was performed using the FEM-based Simufact Forming simulation software. In the simulations, we examined the kinematics of metal flow and determined the distribution patterns of effective strains, temperatures, axial stresses and the Cockroft-Latham damage criterion. Variations in the rolling forces were determined, too. The numerical results were verified experimentally using a universal rolling mill designed and constructed by the present authors. This machine can be used to perform such processes as cross wedge rolling, longitudinal rolling and round bar cropping. During the experiments, we examined process stability and finished product geometry and recorded the torques. The experimental results confirm that axisymmetric aluminum alloy shafts can be produced by cross wedge rolling with two rolls. Last but not least, the experiments served to evaluate the technological potential of the rolling mill used.


Sign in / Sign up

Export Citation Format

Share Document