Simulation of Thermally Activated Metal Forming Process With Meso-Scale Crystal Plasticity

Author(s):  
Suhui Wang ◽  
Chunlei Xie ◽  
Le Ye ◽  
Xin Wu

Under thermally activated deformation conditions many engineering metals (steels, aluminum and magnesium alloys) exhibit much enhanced formability; thus, thermal forming has received increasing interests by automotive industries. The thermally activated material constitutive behaviors are not only strain dependent, but also strain rate and temperature dependent, and it is sensitive to in-situ microstructure evolution. In addition, non-steady-state deformation at a high strain rate (in the order of 10−2s−1 or above) introduces additional challenges in forming simulation. In this case, von Mises based macroscopic plasticity are often not sufficient to describe material behaviors with complex thermomechanical history. In this paper, the rate-dependent crystal plasticity model [1] was applied to the high temperature and high strain rate deformation that is dominated by dislocation creep. A user material subroutine was developed and used for FEA metal forming simulation using commercial ABAQUS/Dynamic code. In the simulation, material behavior was computed based on crystal plasticity at each strain increment without using von-Mises equation or a look-up table of material testing data. By inputting different slip systems or their combinations, and by matching the predicted crystallographic textures with experimentally obtained ones, the active slip systems responsible for the deformation was identified. Then, the material parameters were best fitted to the tensile curves obtained at various strain rates and temperatures. The model was applied for more complex multi-axial metal forming processes. The material behavior, along with its crystallographic texture development, was obtained and validated. As a demonstration, this paper also provides an analysis of a newly developed thrmal forming process [2] with this meso-scale crystal plasticity approach. This forming process involves diameter expansion of a tubular workpiece under combined internal pressure and axial loading and at elevated temperatures.

2021 ◽  
Vol 8 ◽  
Author(s):  
Tomas Manik ◽  
Knut Marthinsen ◽  
Kai Zhang ◽  
Arash Imani Aria ◽  
Bjørn Holmedal

In the present work, the deformation textures during flat profile extrusion from round billets of an AA6063 and an AA6082 aluminium alloy have been numerically modeled by coupling FEM flow simulations and crystal plasticity simulations and compared to experimentally measured textures obtained by electron back-scatter diffraction (EBSD). The AA6063 alloy was extruded at a relatively low temperature (350°C), while the AA6082 alloy, containing dispersoids that prevent recrystallization, was extruded at a higher temperature (500°C). Both alloys were water quenched at the exit of the die, to maintain the deformation texture after extrusion. In the center of the profiles, both alloys exhibit a conventional β-fiber texture and the Cube component, which was significantly stronger at the highest extrusion temperature. The classical full-constraint (FC)-Taylor and the Alamel grain cluster model were employed for the texture predictions. Both models were implemented using the regularized single crystal yield surface. This approach enables activation of any number and type of slip systems, as well as accounting for strain rate sensitivity, which are important at 350°C and 500°C. The strength of the nonoctahedral slips and the strain-rate sensitivity were varied by a global optimization algorithm. At 350°C, a good fit could be obtained both with the FC Taylor and the Alamel model, although the Alamel model clearly performs the best. However, even with rate sensitivity and nonoctahedral slip systems invoked, none of the models are capable of predicting the strong Cube component observed experimentally at 500°C.


Author(s):  
Ericka K. Amborn ◽  
Karim H. Muci-Küchler ◽  
Brandon J. Hinz

Studying the high strain rate behavior of soft tissues and soft tissue surrogates is of interest to improve the understanding of injury mechanisms during blast and impact events. Tests such as the split Hopkinson pressure bar have been successfully used to characterize material behavior at high strain rates under simple loading conditions. However, experiments involving more complex stress states are needed for the validation of constitutive models and numerical simulation techniques for fast transient events. In particular, for the case of ballistic injuries, controlled tests that can better reflect the effects induced by a penetrating projectile are of interest. This paper presents an experiment that tries to achieve that goal. The experimental setup involves a cylindrical test sample made of a translucent soft tissue surrogate that has a small pre-made cylindrical channel along its axis. A small caliber projectile is fired through the pre-made channel at representative speeds using an air rifle. High speed video is used in conjunction with specialized software to generate data for model validation. A Lagrangian Finite Element Method (FEM) model was prepared in ABAQUS/Explicit to simulate the experiments. Different hyperelastic constitutive models were explored to represent the behavior of the soft tissue surrogate and the required material properties were obtained from high strain rate test data reported in the open literature. The simulation results corresponding to each constitutive model considered were qualitatively compared against the experimental data for a single projectile speed. The constitutive model that provided the closest match was then used to perform an additional simulation at a different projectile velocity and quantitative comparisons between numerical and experimental results were made. The comparisons showed that the Marlow hyperelastic model available in ABAQUS/Explicit was able to produce a good representation of the soft tissue surrogate behavior observed experimentally at the two projectile speeds considered.


2012 ◽  
Vol 504-506 ◽  
pp. 1029-1034 ◽  
Author(s):  
Bernd Arno Behrens ◽  
Kathrin Voges-Schwieger ◽  
Anas Bouguecha ◽  
Jens Mielke ◽  
Milan Vucetic

Sheet-bulk metal forming is a novel manufacturing technology, which unites the advantages and design solutions of sheet metal and bulk metal forming. To challenge the high forming force the process is superimposed with an oscillation in the main flow of the process. The paper focuses on the characterization of the material behavior under cyclic load and the effects for the sheet bulk metal forming process.


2007 ◽  
Vol 353-358 ◽  
pp. 619-626
Author(s):  
Ouk Sub Lee ◽  
Yong Hwan Han ◽  
Dong Hyeok Kim

The Split Hopkinson Pressure Bar (SHPB) technique with some special experimental apparatus can be used to obtain the dynamic material behavior under high strain rate loading conditions. An experimental technique that modifies the conventional SHPB has been developed for measuring the compressive stress strain responses of materials with low mechanical impedance and low compressive strengths such as rubber. This paper uses PEEK (Poly-ether-ether-ketone plastic) bars to achieve a closer impedance match between the pressure bar and the specimen materials. In addition, a pulse shaper is utilized to lengthen the rise time of the incident pulse to ensure stress equilibrium and homogeneous deformation of the rubber specimen. It is confirmed that the modified technique is useful to record the dynamic deformation behavior of rubbers under various conditions such as high strain rate with various temperature effect. Furthermore, the dynamic deformation behaviors of heat-aged rubber material under compressive high strain rate are evaluated using the modified SHPB technique.


2010 ◽  
Vol 44-47 ◽  
pp. 2837-2841 ◽  
Author(s):  
Ying Tong

As one of the principal failures, ductile fracturing restricts metal forming process. Cockcroft-Latham fracture criterion is suited for tenacity fracture in bulk metal-forming simulation. An innovative approach involving physical compression experiments, numerical simulations and mathematic computations provides mutual support to evaluate ductile damage cumulating process and ductile fracture criteria (DFC). The results show that the maximum cumulated damage decreases with strain rate rising, and the incremental ratios, that is damage sensitive rate, vary uniformly during the upsetting processes at different strain rates. The damage sensitive rate decreases rapidly, then it becomes stability in a constant 0.11 after true strain -0.85. The true strain -0.85 was assumed as the fracture strain, and the DFC of 6061-T6 aluminum alloy is almost a constant 0.2. According to DFC, the exact fracture moment and position during various forming processes will be predicted conveniently.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Sagar Pawar ◽  
Dinesh Ray ◽  
Sachin D. Kore ◽  
Arup Nandy

Abstract Electromagnetic forming and perforation (EMFP) is an innovative practice where magnetic forces are used for simultaneous forming and perforation operation. This method is complex, which involves a high strain rate as well as high transformation velocities. It is carried out in a short duration of time, and it includes multiple operations, which increases the complexity in understanding the shearing and forming behavior of the material. To understand this behavior, coupled and non-coupled simulation models have been developed and compared with experimental results. Material and failure models are used for simulating the material behavior at a high strain rate. At lower discharge energy, the coupled model failed to capture the initiation of perforation, but numerical results are found 96% in agreement with experimental results. While on the other hand, on the same discharge energy, non-coupled simulation shows 94% agreement and it succeeded in capturing the initiation of perforation. The von-Mises stresses found in all cases are more than 4e+08 Pa which is found higher than the ultimate strength of the material which is resulting in shearing. The failure patterns obtained in finite element analysis (FEA) simulation for both pointed and concave punch perforation show good agreement with general finding in experiments which shows the prediction capability of developed models.


Sign in / Sign up

Export Citation Format

Share Document