scholarly journals 3D Digital modeling for archeology using close range photogrammetry

2018 ◽  
Vol 162 ◽  
pp. 03027
Author(s):  
Abbas Khalaf ◽  
Tariq Ataiwe ◽  
Israa Mohammed ◽  
Ali Kareem

This research is to evaluate the feasibility of applying three-dimensional modelling of the close-range photogrammetry in documenting archaeological monuments by using digital photogrammetry image processing software and digital consumer camera. The digital camera used was Nikon D3100, the processing software was (AgiSoft PhotoScan) and (ArcGIS, ArcScene extension). The study area was selected in the centre of Baghdad province by choosing one of the archeological monuments in it, namely the Abbasid alace. A set of camera locations represent the locations of the images, and as a result of the processing, 81 digital images were arranged in a sequence in which the results of this step were verified. The points cloud after processing were 1,082,617 points. Six control points were selected, used as distances constrained. The validity of the fixed location of the points can be ascertained by checking the data. The program provide the error and accuracy for each image, where a total error in the scale bar was 0.005253 meters, a total error of marks points was 0.010957 meters and the accuracy for all six points was 0.005 meters.

2014 ◽  
Vol 1073-1076 ◽  
pp. 1934-1940 ◽  
Author(s):  
Wei Dong Li ◽  
Nan Lin ◽  
Xu Chen

Combined with the experimental tunnel actual environment to select the appropriate control points as the logo, layout tunnel three dimensional modeling control network. using high-precision total station TM30 to control, measure and acquire image control points coordinate. in the following field collection imaging principle, the actual target of image acquisition, 3D modeling of tunnel based on the software platform of Lensphoto, the research results show that, the tunnel homonymous control point coordinates measured by Lensphoto three-dimensional model and using high-precision total station TM30 observations are of basic agreement, the error in the centimeter level, verified the feasibility of using digital close range photogrammetry in actual measurement of tunnel engineering,has the long-term guiding significance to the tunnel three-dimensional digital information collection and safety production.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Hyoseong Lee ◽  
Dongyeob Han

We propose a photogrammetric board to measure the deformation of a railroad bridge using close-range photogrammetry. The method can be used to compute the exterior orientation parameters and determine three-dimensional (3D) coordinates from images without measuring the control points. The bridge deformation measured using the proposed method was compared to that measured with a 3D laser tracker. The measurement error was within 1 mm, and the proposed method can measure the deformation of an I-plate girder of a railroad bridge. This method may be an alternative to precise stability inspections and bridge inspections.


Author(s):  
Z. Majid ◽  
M. F. M. Ariff ◽  
K. M. Idris ◽  
A. R. Yusoff ◽  
K. M. Idris ◽  
...  

The paper describes the used of close-range photogrammetry and terrestrial laser scanning technologies as an innovative technology for acquiring the three-dimensional data of an ancient cave paintings. The close-range photogrammetry technology used in the research was divided in two categories which are the UAV-based close-range photogrammetry and the terrestrialbased close-range photogrammetry. The UAV-based technology involved with the used of calibrated Phantom 4 System while the terrestrial-based technology involved with the calibrated Sony F828 digital camera and pPhotoModeler software. Both stereo and convergent image acquisition techniques were used to acquire the images of the paintings. The ancient cave paintings were also recorded using terrestrial laser scanning technology. In the research, the FARO Focus 3D terrestrial laser scanner was used to capture the three-dimensional point clouds and images of the paintings. The finding shows that both close-range photogrammetry and laser scanning technologies provide excellent solutions to map and to record the ancient paintings. As compared to the conventional method, both close-range photogrammetry and terrestrial laser scanning technology provide a noncontact solution for data acquisition and the data was recorded in digital format for better protection and security.


2011 ◽  
Vol 110-116 ◽  
pp. 4337-4342
Author(s):  
Ying Dan Mao

With the progressive development of photogrammetric technology, the digital photogrammetric method based on the basic principles of digital imaging and photogrammetry has replaced the traditional photogrammetric mapping method and has been widely promoted and applied. In this paper, it studies further the issues about the image processing and photogrammetric algorithms of common digital cameras based on some research results in the traditional field of close-range photogrammetry, and verifies with actual examples the application of using digital cameras to implement the close-range photogrammetric method to engineering is feasible.


Author(s):  
P. Midulla

Abstract. This paper present a method for close range photogrammetry based on an camera positioning scheme in which two cameras capture an equal portion of an object at the same scale, but have different focal lengths and camera-to-object distances. This scheme is alternative to the stereoscopic scheme and is associated with a system of equations which permits one to calculate first the relief displacement of points on a photograph and then their relief relative to a reference plane. The obtained relief and relief displacement values can be used to produce low-cost orthophotographs by using software for image processing, which doesn’t need to be dedicated, but has to provide measurement and calculation functions. Moreover, this method also allows one to obtain three-dimensional coordinates, through further calculations.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Sign in / Sign up

Export Citation Format

Share Document