contour maps
Recently Published Documents





2021 ◽  
Vol 54 (2F) ◽  
pp. 62-73
Hiba Kareem ◽  
Manal Al-Kubaisi ◽  
Ghazi Hasan Alshar'a

This study used structural contour maps to carry out the geometrical analysis for Faihaa structure in Basra southern Iraq. The study used row data of well logs and structural maps while Softwares were Didger 4, Stereonet v.11 and Petrel 2017 Faihaa Oil Field is located at an eastern part of the Mesopotamian Zone within the Zubair Subzone, characterized by subsurface geological structures covered by Quaternary sediments. These structures are oriented in the NW-SE direction in the eastern part of the band and the N-S direction in the southern region, and some in the direction NE-SW. The Faihaa Oil Field shows that is an Anticline structure. The average dip value of an axial surface is 89.7° while the plunge of hinge line between 4–4.2 in North-West direction referred to that Faihaa Structure is upright and gentle fold. Based on the Thickness ratio and axial angle, the Faihaa Structure is thickened Fold. The eastern limb of the fold is longer than the western limb, so Faihaa Oil Field is an asymmetrical structure. The difference in dimensions (5<Length / Width < 2) confirmed the brachy fold of the Faihaa structure.

2021 ◽  
Vol 12 (1) ◽  
pp. 170
Huey-Chu Huang ◽  
Tien-Han Shih ◽  
Cheng-Ta Hsu ◽  
Cheng-Feng Wu

Near-surface S-wave velocity structures (VS) are crucial in site-effect studies and ground-motion simulations or predictions. We explored S-wave velocity structures in Taichung, the second-largest city in Taiwan by population, by employing array measurements of microtremors at a total of 53 sites. First, the fundamental-mode dispersion curves of Rayleigh waves were estimated by adopting the frequency–wavenumber analysis method. Second, the surface-wave inversion technique was used to calculate the S-wave velocity structures of the area. At many sites, observed phase velocities were almost flat, with a phase velocity of approximately 800–1300 m/s in the frequency range of 0.6–2 Hz. A high-velocity zone (VS of 900–1500 m/s) with a convex shape was observed at the shallow S-wave structures of these sites (depths of 50–500 m). On the basis of the inversion results, we constructed two-dimensional and three-dimensional contour maps to elucidate the variations of VS structures in Taichung. According to VS-contour maps at different depths, lowest S-wave velocities are found at the western coastal plain, whereas highest S-wave velocities appear on the eastern side. The S-wave velocity gradually decreases from east to west. Moreover, the S-wave velocity of the Tertiary bedrock is assumed to be 1500 m/s in the area. According to the depth-contour map (VS = 1500 m/s), the depths of the bedrock range from 250 m (the eastern part) to 1550 m (the western part). The thicknesses of the alluvium gradually decrease from west to east. Our results are consistent with the geology of the Taichung area.

Baichuan Liu ◽  
Kayci Prugue ◽  
Mojdeh Nikpour ◽  
Kristopher Ward ◽  
Brian A Mazzeo ◽  

Abstract Heterogeneity of MacMullin number within battery electrodes is a key metric affecting cell performance. To characterize this heterogeneity, an aperture probe was developed. This probe, coupled with a newly developed transmission-line model, allows for measurements of tortuosity, represented by the MacMullin number, on millimeter length scales. Local MacMullin number values of seven electrodes were measured, and the ionic resistance profiles of these electrodes are given through contour maps of the MacMullin number. The method is validated by comparing the average MacMullin number to the value obtained through other measurement methods. The results show significant local MacMullin number variation in such electrodes on a millimeter length scale. This method will allow battery manufacturers and researchers to better quantify sources of heterogeneity and improve electrode quality.

2021 ◽  
Vol 2131 (2) ◽  
pp. 022117
M Major ◽  
I Major ◽  
B Yazyev

Abstract The paper presents calculations of the change in amplitude of strong discontinuity wave propagating in a thin rod made of hyperelastic Murnaghan material. Two functions were assumed for the calculations, describing the change of the cross-section of the rod with the constant scaling parameter?for both decreasing cross-sections of the analysed steel rods. A numerical analysis was performed based on analytical solutions. The analytical form of solution for both rods with decreasing cross-sections allowed for preparation of contour maps for the propagating wave of strong discontinuity. Furthermore, the changes in the relative amplitude of the propagating shock wave in a thin rod were determined for two rods analysed in the study, for which the differences in the values of the relative amplitude in the final cross-section were found.

2021 ◽  
pp. 1-10
D. Al-Jaza ◽  
A. Medina ◽  
N. Magan

Chillies and chilli-based products are important spices on a global basis. The production, processing, transport and storage phases of chillies are prone to infection by Aspergillus Section Flavi and contamination with aflatoxins (AFs), especially aflatoxin B1 (AFB1) for which legislative limits exist in many countries. We have examined the effect of the interacting abiotic factors of water availability (water activity, aw; 0.995-0.850 aw) and temperature (15-37 °C) on (a) lag phases prior to growth, (b) growth, (c) AFB1 production and (d) contour maps of optimum and boundary conditions for colonisation and toxin production by three Aspergillus flavus strains on a 10% chilli-based medium. Additional studies with whole red chillies + A. flavus conidial inoculum on AFB1 contamination during storage for 10-20 days at 30 °C were also carried out. In vitro, the lag phases before growth were delayed by lower temperatures (15, 20 °C) and aw levels (0.928-0.901 aw). There was no statistical difference in growth between the three strains. Optimal growth was at 37 °C and 0.982 aw with no growth at 0.85 aw. Optimal temperature × aw conditions for AFB1 production were at 30 °C and 0.982 aw with no statistical difference in production between strains. No AFB1 was produced at 15-20 °C at 0.901 and 0.928 aw levels, respectively. In situ studies with A. flavus inoculated whole red chillies at 0.90 and 0.95 aw found that this species became the major component of the total fungal populations at 30 °C after 10-20 days storage. AFB1 contamination was above the European legislative limits (5 μg/kg) for spices at 0.90 aw after 20 days storage and at 0.95 aw after 10 and 20 days. This suggests that storage conditions of ≥0.90 aw, especially at ≥25-30 °C represents a significant risk of contamination with AFB1 at levels where rejection might occur, even after only 10-20 days storage.

2021 ◽  
Vol 12 (6) ◽  
pp. 7429-7437

Several N, N-substituted diamines such as putrescine and N-monoalkylated derivatives have demonstrated potential as lead compounds against Leishmania donovani at submicromolar levels. There is a need to refine available diamines for enhanced leishmanicidal activity. A 3D-QSAR by Comparative molecular field analysis (CoMFA) on a series of tested diamines for their activities against L. donovani was conducted to understand better the mechanism of action and SARs of the compounds. The model was constructed with AM1 energy minimized conformers of the training set compounds (n=20) by the PLS algorithm method, cross-validated by the method of leave-one-out (LOO), and externally validated using the test set compounds (n=5). A robust model with high predictability of untested compounds was obtained for 2PC (latent variables). The coefficients of determinations for PLS regression R2, internal cross-validation, Q2 and external prediction P2 were 0.97 (SDEC=0.095), 0.82 (SDEP=0.102) and 0.73 (SDEP=0.115) respectively with F-value 618.8 for 2PC. The model coefficients graphically translated into contour maps showed regions where steric (62 %) and electrostatic (38 %) properties influence the leishmanicidal activity of the compounds. In addition to the optimum chain length (n=4), a steric effect at position 4 alone or combined with the electrostatic effect at position 3 of the diamine backbone significantly enhanced the leishmanicidal activity. It could further be explored for even higher activity. The model supported the empirical data, which identified N, N'-substituted diamine as the scaffold for leishmanicidal activities and further provided insights for further optimization of the lead compound.

A. Yu. Kosmacheva ◽  
M. O. Fedorovich

We present the interpretation of 2D seismic data in the Vilyui hemisyneclise located in the Republic of Sakha (Yakutia). The model identifies structural and tectonic features and tectonic development history of the Mesozoic deposits in the Vilyui hemisyneclise. Structure contour maps for the reflecting horizons of the Mesozoic are qualitatively the same. Traced faults attenuate at various stratigraphic levels. The structures of the hemisyneclise are known to be formed during the Cretaceous stage of development.

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3269
Marianna Cangemi ◽  
Valentina Censi ◽  
Paolo Madonia ◽  
Rocco Favara

Sources of groundwater contaminants in inhabited areas, located in complex geo-tectonic contexts, are often deeply interlocked, thus, making the discrimination between anthropic and natural origins difficult. In this study, we investigate the Peloritani Mountain aquifers (Sicily, Italy), using the combination of probability plots with concentration contour maps to retrieve an overall view of the groundwater geo-chemistry with a special focus on the flux of heavy metals. In particular, we present a methodology for integrating spatial data with very different levels of precision, acquired before and during the “geomatic era”. Our results depict a complex geochemical layout driven by a geo-puzzle of rocks with very different lithological natures, hydraulically connected by a dense tectonic network that is also responsible for the mixing of deep hydrothermal fluids with the meteoric recharge. Moreover, a double source, geogenic or anthropogenic, was individuated for many chemicals delivered to groundwater bodies. The concentration contour maps, based on the different data groups identified by the probability plots, fit the coherency and congruency criteria with the distribution of both rock matrices and anthropogenic sources for chemicals, indicating the success of our geostatistical approach.

2021 ◽  
Vol 9 ◽  
Liang Wang ◽  
Ying Cheng ◽  
Ravi Naidu ◽  
Peter Gell ◽  
Mark Bowman

Traditional contaminated site characterisation approaches are time-consuming, labour-intensive, and demand a high level of expertise. This case study provides a rapid field-based solution to investigating a VOC contaminated site and its vapour incursion by combining soil vapour and groundwater survey. To fully assess the volatile organic compound (VOC) distribution in a contaminated site, a number of self-developed soil vapour sampling probes (SVSPs) were placed vertically at different locations in a grid with different depths. Hence, 3D subsurface contour maps for VOC concentrations in soil vapour can be obtained and used to help identify hot spots and the migration patterns of VOCs. This SVSP is “easy-to-install” in the field and a cost-effective solution for rapid assessment of soil vapour samples. The SVSPs can be installed both vertically and horizontally. If there is a requirement to take soil vapour samples beneath an existing building from a potential contamination source zone, SVSPs can be horizontally installed beneath the building without compromising its structural integrity. In addition, to ascertain the correct groundwater channels that are likely to carry contaminants from a potential source zone, an electrical resistivity tomography technique was employed to provide the preliminary information for groundwater delineation in a complex groundwater channel network.

Sign in / Sign up

Export Citation Format

Share Document