scholarly journals A Nonlinear Second-order Spacecraft Attitude Tracking Control Model for Control System Stabilization

2018 ◽  
Vol 198 ◽  
pp. 05007
Author(s):  
Xiaoyi Wang

A control model for the direct parameter approach for spacecraft attitude tracking is presented in this paper. First of all, the spacecraft attitude tracking control model is built up by the error equation of the second-order nonlinear quaternion-based attitude system. A problem of control system stabilization is raised based on the control model. Compared with other control models, the second-order can offer the advantages of noapproximation and clear control states. The basic spacecraft control model has to focus on to the two variables which are angular rate and attitude quaternion, however, the new attitude control problem is only with respect to one variable which is the spacecraft attitude quaternion. Therefore, the second-order model is simpler and clear than basic first-order model.

2021 ◽  
Author(s):  
Jie Wang ◽  
YuShang Hu ◽  
Wenqiang Ji

Abstract This paper investigates the problem of the finite-time attitude tracking control for rigid spacecrafts with external disturbances and inertia uncertainties. Firstly, a finite-time approach is designed to achieve attitude tracking control of the rigid spacecraft in absence of disturbances and inertia uncertainties and the time of convergence can be chosen in advance. Then, the integral sliding mode combined with barrier function-based adaptive laws is proposed to reject the disturbances and inertia uncertainties, and at the same time, a barrier function-based adaptive method can also ensure the solutions of the rigid spacecraft system belonging to a stipulated vicinity of the intended variables starting from the initial moment and the uncertainties' upper bound is not overestimated. Finally, numerical simulation is provided to illustrate the efficiency of the proposed control protocol.


Sign in / Sign up

Export Citation Format

Share Document