symmetric structure
Recently Published Documents


TOTAL DOCUMENTS

285
(FIVE YEARS 91)

H-INDEX

21
(FIVE YEARS 4)

Author(s):  
Noam Soker

Abstract I identify a point-symmetric structure in recently published VLT/MUSE velocity maps of different elements in a plane along the line of sight at the center of the supernova remnant SNR~0540-69.3, and argue that jittering jets that exploded this core collapse supernova shaped this point-symmetric structure. The four pairs of two opposite clumps that compose this point symmetric structure suggest that two to four pairs of jittering jets shaped the inner ejecta in this plane. In addition, intensity images of several spectral lines reveal a faint strip (the main jet-axis) that is part of this plane of jittering jets and its similarity to morphological features in a few other SNRs and in some planetary nebulae further suggests shaping by jets. My interpretation implies that in addition to instabilities, jets also mix elements in the ejecta of core collapse supernovae. Based on the point-symmetric structure and under the assumption that jittering jets exploded this supernova, I estimate the component of the neutron star natal kick velocity on the plane of the sky to be $\simeq 235 \km\s^{-1}$, and at an angle of $\simeq 47^\circ$ to the direction of the main jet-axis. I analyse this natal kick direction together with other 12 SNRs in the frame of the jittering jets explosion mechanism.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2988
Author(s):  
Liangbing Liao ◽  
Zhiyi Li ◽  
Yuzhu Tang ◽  
Xing Chen

In this paper, a dual-polarized stacked patch antenna for wireless communication and microwave power transfer is proposed. The stacked antenna consists of four rectangular apertures that are etched on the ground plane and four identical cross-placed coupling strips that are set on the upper layer of the ground plane, which are used to excite the top-layer patches. The presented stacked patch antenna was designed as a completely symmetric structure except for the feeding network, resulting in a simple structure and the same radiation patterns for the two polarized ports. The proposed antenna operates at around 5.8 GHz, and the simulation and measured results show that it has a gain of 8.5 dBi and an isolation of 25 dB. The measured antenna efficiency of the two polarized ports at 5.85 GHz was 89.2% and 88.6%, respectively. Finally, a rectifying circuit was designed, and the maximum measured conversion efficiency of the two polarized rectenna was 63.5% and 62.7%, respectively.


2021 ◽  
Vol 58 (2) ◽  
pp. 105-117
Author(s):  
Shuji Ando

Summary Studies have been carried out on decomposing a model with symmetric structure using a model with asymmetric structure. In the existing decomposition theorem, the sum-symmetry model holds if and only if all of the two-parameters sum-symmetry, global symmetry and concordancediscordance models hold. However, this existing decomposition theorem does not satisfy the asymptotic equivalence for the test statistic, namely that the value of the likelihood ratio chi-squared statistic of the sum-symmetry model is asymptotically equivalent to the sum of those of the decomposed models. To address this issue, this study introduces a new decomposition theorem in which the sum-symmetry model holds if and only if all of the two-parameters sum-symmetry, global symmetry and weighted global-sum-symmetry models hold. The proposed decomposition theorem satisfies the asymptotic equivalence for the test statistic—the value of the likelihood ratio chi-squared statistic of the sum-symmetry model is asymptotically equivalent to the sum of those of the two-parameters sum-symmetry, global symmetry and weighted global-sum-symmetry models.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1587
Author(s):  
Mingfeng Zha ◽  
Wenbin Qian ◽  
Wenlong Yi ◽  
Jing Hua

Traditional pest detection methods are challenging to use in complex forestry environments due to their low accuracy and speed. To address this issue, this paper proposes the YOLOv4_MF model. The YOLOv4_MF model utilizes MobileNetv2 as the feature extraction block and replaces the traditional convolution with depth-wise separated convolution to reduce the model parameters. In addition, the coordinate attention mechanism was embedded in MobileNetv2 to enhance feature information. A symmetric structure consisting of a three-layer spatial pyramid pool is presented, and an improved feature fusion structure was designed to fuse the target information. For the loss function, focal loss was used instead of cross-entropy loss to enhance the network’s learning of small targets. The experimental results showed that the YOLOv4_MF model has 4.24% higher mAP, 4.37% higher precision, and 6.68% higher recall than the YOLOv4 model. The size of the proposed model was reduced to 1/6 of that of YOLOv4. Moreover, the proposed algorithm achieved 38.62% mAP with respect to some state-of-the-art algorithms on the COCO dataset.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2262
Author(s):  
Massimiliano Ferrara ◽  
Tiziana Ciano ◽  
Mariangela Gangemi ◽  
Luca Guerrini

The paper analyzes a two-stage oligopoly game of semi-collusion in production described by a system with a symmetric structure. We examine the local stability of a Nash equilibrium and the presence of bifurcations. We discover that the model is capable of exhibiting extremely complicated dynamic behaviors.


Author(s):  
Jia-Chen Liu ◽  
Qian-Xiao Fang ◽  
Yu Wu ◽  
Zheng-Ya Xia ◽  
Yun-Tuan Fang

In modern microwave and optical communication systems, it is urgent to develop optical components with the same performance as electronic components. In this paper, a PT-symmetric structure including electro-optical medium is designed to construct optical triode. It is found that the structure has a pole effect of amplification under certain parameters. The frequency of the incident wave at the pole is taken as the carrier frequency, and the electrical signal is modulated into an optical signal. By setting the bias electric field, the modulated optical signal can be amplified in phase and out phase, and even by doubling frequency, and a new optical triode model is obtained. The designed model will play an important role in the design of optical integrated devices.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anshul Agarwal ◽  
Pramod K. Singhal ◽  
Vandana V. Thakare

Abstract Dual-polarization, enhanced gain and compact size is the basic need of the base station antennas whereas a modern communication system needs a wideband antenna which can cover both the LTE & 5G applications. In the present work, a cross dipole antenna is proposed for LTE & sub 6 GHz 5G frequency band for Base Station Antenna Applications. By introducing asymmetrically shaped pentagon slots in the dipole and open-loop dipole patches, wide impedance bandwidth of 1.65–4.05 GHz at a return loss of −14 dB are achieved for 4G & 5G applications. Two symmetric feeding lines orthogonal to each other have been used to obtain the dual-polarization. Also, a high stable gain of 7 ± 1 dBi & HPBW of 80 ± 5° was achieved over the entire operating band at both the ports due to the symmetric structure. The proposed antenna is compared for size and bandwidth with the structures already proposed in the literature and significant enhancement is observed to be used for Base station antennas.


Author(s):  
Miguel Martín Stickle ◽  
Miguel Molinos ◽  
Pedro Navas ◽  
Ángel Yagüe ◽  
Diego Manzanal ◽  
...  

AbstractStandard finite element formulation and implementation in solid dynamics at large strains usually relies upon and indicial-tensor Voigt notation to factorized the weighting functions and take advantage of the symmetric structure of the algebraic objects involved. In the present work, a novel component-free approach, where no reference to a basis, axes or components is made, implied or required, is adopted for the finite element formulation. Under this approach, the factorisation of the weighting function and also of the increment of the displacement field, can be performed by means of component-free operations avoiding both the use of any index notation and the subsequent reorganisation in matrix Voigt form. This new approach leads to a straightforward implementation of the formulation where only vectors and second order tensors in $${\mathbb {R}}^3$$ R 3 are required. The proposed formulation is as accurate as the standard Voigt based finite element method however is more efficient, concise, transparent and easy to implement.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephen M. Keable ◽  
Adrian Kölsch ◽  
Philipp S. Simon ◽  
Medhanjali Dasgupta ◽  
Ruchira Chatterjee ◽  
...  

AbstractPhotosystem I (PS I) has a symmetric structure with two highly similar branches of pigments at the center that are involved in electron transfer, but shows very different efficiency along the two branches. We have determined the structure of cyanobacterial PS I at room temperature (RT) using femtosecond X-ray pulses from an X-ray free electron laser (XFEL) that shows a clear expansion of the entire protein complex in the direction of the membrane plane, when compared to previous cryogenic structures. This trend was observed by complementary datasets taken at multiple XFEL beamlines. In the RT structure of PS I, we also observe conformational differences between the two branches in the reaction center around the secondary electron acceptors A1A and A1B. The π-stacked Phe residues are rotated with a more parallel orientation in the A-branch and an almost perpendicular confirmation in the B-branch, and the symmetry breaking PsaB-Trp673 is tilted and further away from A1A. These changes increase the asymmetry between the branches and may provide insights into the preferential directionality of electron transfer.


Sign in / Sign up

Export Citation Format

Share Document