scholarly journals Cost-Saving Opportunities for Taylor’s University Daily Energy Consumption

2021 ◽  
Vol 335 ◽  
pp. 02001
Author(s):  
Shun Seng Chan ◽  
Chockalingam Aravind Vaithilingam ◽  
Gowthamraj Rajendran

Solar energy is a renewable energy abundant throughout the year in a tropical weather country like Malaysia. This paper investigates the viability of using solar PV systems as a cost-saving measure to supply electricity for Taylor’s University (TU) daily energy usage. Experimental values were compared with theoretical values and analyzed in this paper. In this experiment, four photovoltaic (PV) panels connected in parallel were linked to a maximum power point tracking (MPPT) charge controller acting as a voltage regulator. A lead-acid battery was also coupled to the controller that acts as an energy storage to store the harvested solar energy from PV panels and discharge it in electricity. Temperature sensors connected to an Arduino UNO were placed at different locations on the solar panels to monitor for irregularities in the temperature of the panels. The amount of electricity produced was calculated using the data obtained. The results showed that using a larger PV system will generate much more electricity and create a high return on investment (ROI) if the solar panels absorbed sunlight under good weather conditions, thus bringing forward a potential solution to reduce TU’s electricity consumption.

Author(s):  
Layachi Zaghba ◽  
◽  
Messaouda Khennane ◽  
Abdelhalim Borni ◽  
Amor Fezzani ◽  
...  

This paper presents a performance analysis of Solar PV System under Real Outdoor Weather Conditions based on PSO fuzzy optimization approach. The PV system consists of a PV array of 6 kWp, DC-DC boost converter, PSO fuzzy MPPT control and resistive Load. In this paper, an efficient maximum power point tracking method based on combining the strengths of fuzzy maximum approach and Particle Swarm Optimization to optimize fuzzy gain. The photovoltaic PV system has been simulated using MATLAB/SIMULINK to validate the effectiveness of the proposed MPPT. It can be concluded that the proposed method can quickly convergence to the MPP, higher efficiency and low oscillation during different situations of climatic conditions.


2015 ◽  
Vol 787 ◽  
pp. 227-232 ◽  
Author(s):  
L.A. Arun Shravan ◽  
D. Ebenezer

In recent years there has been a growing attention towards use of solar energy. Advantages of photovoltaic (PV) systems employed for harnessing solar energy are reduction of greenhouse gas emission, low maintenance costs, fewer limitations with regard to site of installation and absence of mechanical noise arising from moving parts. However, PV systems suffer from relatively low conversion efficiency. Therefore, maximum power point tracking (MPPT) for the solar array is essential in a PV system. The nonlinear behaviour of PV systems as well as variations of the maximum power point with solar irradiance level and temperature complicates the tracking of the maximum power point. This paper reviews various MPPT methods based on three categories: offline, online and hybrid methods. Design of a PV system in a encoding environment has also been reviewed here. Furthermore, different MPPT methods are discussed in terms of the dynamic response of the PV system to variations in temperature and irradiance, attainable efficiency, and implementation considerations.


Author(s):  
C. Pavithra ◽  
Pooja Singh ◽  
Venkatesa Prabhu Sundramurthy ◽  
T.S. Karthik ◽  
P.R. Karthikeyan ◽  
...  

2021 ◽  
Vol 3 (3) ◽  
pp. 582-600
Author(s):  
Farhad Khosrojerdi ◽  
Stéphane Gagnon ◽  
Raul Valverde

The performance of a photovoltaic (PV) system is negatively affected when operating under shading conditions. Maximum power point tracking (MPPT) systems are used to overcome this hurdle. Designing an efficient MPPT-based controller requires knowledge about power conversion in PV systems. However, it is difficult for nontechnical solar energy consumers to define different parameters of the controller and deal with distinct sources of data related to the planning. Semantic Web technologies enable us to improve knowledge representation, sharing, and reusing of relevant information generated by various sources. In this work, we propose a knowledge-based model representing key concepts associated with an MPPT-based controller. The model is featured with Semantic Web Rule Language (SWRL), allowing the system planner to extract information about power reductions caused by snow and several airborne particles. The proposed ontology, named MPPT-On, is validated through a case study designed by the System Advisor Model (SAM). It acts as a decision support system and facilitate the process of planning PV projects for non-technical practitioners. Moreover, the presented rule-based system can be reused and shared among the solar energy community to adjust the power estimations reported by PV planning tools especially for snowy months and polluted environments.


2020 ◽  
Author(s):  
Mohammad junaid Khan

Abstract Backgrounds: Solar photo-voltaic (PV) arrays have non-linear characteristics with distinctive maximum power point (MPP) which relies on ecological conditions such as solar radiation and ambient temperature. In order to obtain continuous maximum power (MP) from PV arrays under varying ecological conditions, maximum power point tracking (MPPT) control methods are employed. MPPT is utilized to extract MP from the solar PV array, high-performance soft computing techniques can be used as an MPPT technique. Results: In order to show the feasibility and performance of the proposed Artificial Intelligence based Perturbe and Observe (AIAPO) MPPT controller, a simulation analysis has been carried out using the PV system. Combined results with different MPPT systems for power, voltage and current waveforms are the output values increase to 272.4W, 157V and 1.74A respectively. Using proposed AIAPO MPPT provides more accurate and stable result as compared to Perturbe and Observe (PO), Fuzzy Logic (FL) and Artificial Neural Network (ANN) based MPPT Technique. As per the experimentation performed by various MPPT techniques are carried out for PV system which are clearly indicating that the comparative analysis of power, voltage and current performance of PV system (i.e. have been recorded 272.4W, 157V and 1.74A) using proposed MPPT method which is better than the PO based MPPT (i.e. 169.1W, 127V, 1.43A), FL based MPPT technique (i.e. 256.9W, 152V, 1.69A) and ANN based MPPT technique (i.e. 265W, 154V, 1.71A) correspondingly. Conclusions: The aim of this paper is to track MPP from the solar PV array by the proposed hybrid controller for irradiation changes and comparing results with PO, FL and ANN based MPPT controllers. Different MPPT techniques have been used to compute MPP and improved efficiency of the PV panel. AIAPO, ANN, FL and PO MPPT methods have been chosen to obtain this objective. Simulation results showing that the system in which proposed control method has been used gives better performance and reduce fluctuations of the MPP as compared to PO, FL and ANN based MPPT technique at rapid changes of irradiation. In order to fabricate a reliable and real time hybrid system, there is a massive scope of research to develop multi-input renewable energy systems.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012123
Author(s):  
Vinay Kumar ◽  
T Naveen Kumar ◽  
K T Prajwal

Abstract As an increased demand in power resources and to reduce global warming, Renewable Energy Sources (RES) are preferred over the conventional sources. Among various available RES, solar energy is the effective and efficient one. The solar energy is also clean and free energy. The use of Maximum Power Point Tracking (MPPT) is the one of the techniques to get maximized output power from the Photo Voltaic (PV) system. The proposed method uses a voltage sensor by eliminating the need of current sensor based on selected technique using Partial Swarm Optimization (PSO) technique interfaced with DC-DC boost converter. PSO technique is one of the methods which has high conflux speed, to precisely track the maximum power. The result of the planned methodology is studied with the assistance of an acceptable simulation applied in MATLAB/Simulink setting for experiment to valid of microcontroller which is employed. The result obtained from the simulations studies showed that current sensor less methodology using PSO technique can extract the maximize power from PV systems.


Sign in / Sign up

Export Citation Format

Share Document