Well-posedness of the time-space fractional stochastic Navier-Stokes equations driven by fractional Brownian motion

2018 ◽  
Vol 13 (1) ◽  
pp. 11 ◽  
Author(s):  
Pengfei Xu ◽  
Caibin Zeng ◽  
Jianhua Huang

The current paper is devoted to the time-space fractional Navier-Stokes equations driven by fractional Brownian motion. The spatial-temporal regularity of the nonlocal stochastic convolution is firstly established, and then the existence and uniqueness of mild solution are obtained by Banach Fixed Point theorem and Mittag-Leffler families operators.

Author(s):  
Abdelkerim Chaabani,

This paper aims to establish existence and uniqueness results of weak and strong solution to the three-dimensional periodic magnetization-variables formulation to Navier-Stokes equations with damping term. Authors in precedent works addressed the question as to whether this model and similar ones without damping term possess a weak solution. In this vein, considering a damping term in the magnetization-variable formulation turned to be consequential as it enforces existence and uniqueness results. Energy methods, compactness methods are the main tools.


Author(s):  
Karl Kunisch ◽  
Eduardo Renteria Casas

Existence and uniqueness of solutions to the Navier-Stokes equation in dimension two with forces in the space $L^q( (0,T); \bWmop)$ for $p$ and $q$ in  appropriate parameter ranges are proven. The case of spatially measured-valued inhomogeneities is included. For the associated Stokes equation the well-posedness results are verified in arbitrary dimensions with $1 < p, q < \infty$ arbitrary.


In this article, for 0 ≤m<∞ and the index vectors q=(q_1,q_2 ,q_3 ),r=(r_1,r_2,r_3) where 1≤q_i≤∞,1<r_i<∞ and 1≤i≤3, we study new results of Navier-Stokes equations with Coriolis force in the rotational framework in mixed-norm Sobolev-Lorentz spaces H ̇^(m,r,q) (R^3), which are more general than the classical Sobolev spaces. We prove the existence and uniqueness of solutions to the Navier-Stokes equations (NSE) under Coriolis force in the spaces L^∞([0, T]; H ̇^(m,r,q) ) by using topological arguments, the fixed point argument and interpolation inequalities. We have achieved new results compared to previous research in the Navier-Stokes problems.


Author(s):  
Jean-Yves Chemin ◽  
Benoit Desjardins ◽  
Isabelle Gallagher ◽  
Emmanuel Grenier

In this chapter we intend to investigate the stability of the Leray solutions constructed in the previous chapter. It is useful to start by analyzing the linearized version of the Navier–Stokes equations, so the first section of the chapter is devoted to the proof of the well-posedness of the time-dependent Stokes system. The study will be applied in Section 3.2 to the two-dimensional Navier–Stokes equations, and the more delicate case of three space dimensions will be dealt with in Sections 3.3–3.5.


Sign in / Sign up

Export Citation Format

Share Document