scholarly journals Continuous time mean-variance portfolio optimization through the mean field approach

2016 ◽  
Vol 20 ◽  
pp. 30-44 ◽  
Author(s):  
Markus Fischer ◽  
Giulia Livieri
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Stephanie S. W. Su ◽  
Sie Long Kek

In this paper, the current variant technique of the stochastic gradient descent (SGD) approach, namely, the adaptive moment estimation (Adam) approach, is improved by adding the standard error in the updating rule. The aim is to fasten the convergence rate of the Adam algorithm. This improvement is termed as Adam with standard error (AdamSE) algorithm. On the other hand, the mean-variance portfolio optimization model is formulated from the historical data of the rate of return of the S&P 500 stock, 10-year Treasury bond, and money market. The application of SGD, Adam, adaptive moment estimation with maximum (AdaMax), Nesterov-accelerated adaptive moment estimation (Nadam), AMSGrad, and AdamSE algorithms to solve the mean-variance portfolio optimization problem is further investigated. During the calculation procedure, the iterative solution converges to the optimal portfolio solution. It is noticed that the AdamSE algorithm has the smallest iteration number. The results show that the rate of convergence of the Adam algorithm is significantly enhanced by using the AdamSE algorithm. In conclusion, the efficiency of the improved Adam algorithm using the standard error has been expressed. Furthermore, the applicability of SGD, Adam, AdaMax, Nadam, AMSGrad, and AdamSE algorithms in solving the mean-variance portfolio optimization problem is validated.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 332 ◽  
Author(s):  
Peter Joseph Mercurio ◽  
Yuehua Wu ◽  
Hong Xie

This paper presents an improved method of applying entropy as a risk in portfolio optimization. A new family of portfolio optimization problems called the return-entropy portfolio optimization (REPO) is introduced that simplifies the computation of portfolio entropy using a combinatorial approach. REPO addresses five main practical concerns with the mean-variance portfolio optimization (MVPO). Pioneered by Harry Markowitz, MVPO revolutionized the financial industry as the first formal mathematical approach to risk-averse investing. REPO uses a mean-entropy objective function instead of the mean-variance objective function used in MVPO. REPO also simplifies the portfolio entropy calculation by utilizing combinatorial generating functions in the optimization objective function. REPO and MVPO were compared by emulating competing portfolios over historical data and REPO significantly outperformed MVPO in a strong majority of cases.


2017 ◽  
Vol 106 ◽  
pp. 335-342 ◽  
Author(s):  
F.J. Santos-Alamillos ◽  
N.S. Thomaidis ◽  
J. Usaola-García ◽  
J.A. Ruiz-Arias ◽  
D. Pozo-Vázquez

2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Hui-qiang Ma

We consider a continuous-time mean-variance portfolio selection model when stock price follows the constant elasticity of variance (CEV) process. The aim of this paper is to derive an optimal portfolio strategy and the efficient frontier. The mean-variance portfolio selection problem is formulated as a linearly constrained convex program problem. By employing the Lagrange multiplier method and stochastic optimal control theory, we obtain the optimal portfolio strategy and mean-variance efficient frontier analytically. The results show that the mean-variance efficient frontier is still a parabola in the mean-variance plane, and the optimal strategies depend not only on the total wealth but also on the stock price. Moreover, some numerical examples are given to analyze the sensitivity of the efficient frontier with respect to the elasticity parameter and to illustrate the results presented in this paper. The numerical results show that the price of risk decreases as the elasticity coefficient increases.


Author(s):  
Wong Ghee Ching ◽  
Che Mohd Imran Che Taib

This paper aims at solving an optimization problem in the presence of heavy tail behavior of financial assets. The question of minimizing risk subjected to a certain expected return or maximizing return for a given expected risk are two objective functions to be solved using Markowitz model. The Markowitz based strategies namely the mean variance portfolio, minimum variance portfolio and equally weighted portfolio are proposed in conjunction with mean and variance analysis of the portfolio. The historical prices of stocks traded at Bursa Malaysia are used for empirical analysis. We employed CAPM in order to investigate the performance of the Markowitz model which was benchmarked with risk adjusted KLSE Composite Index. We performed a backtesting study of portfolio optimization techniques defined under modern portfolio theory in order to find the optimal portfolio. Our findings showed that the mean variance portfolio outperformed the other two strategies in terms of performance of investment for heavy tailed assets.


2010 ◽  
Vol 2010 ◽  
pp. 1-22 ◽  
Author(s):  
Lin Zhao

We investigate a continuous-time version of the mean-variance portfolio selection model with jumps under regime switching. The portfolio selection is proposed and analyzed for a market consisting of one bank account and multiple stocks. The random regime switching is assumed to be independent of the underlying Brownian motion and jump processes. A Markov chain modulated diffusion formulation is employed to model the problem.


Sign in / Sign up

Export Citation Format

Share Document