scholarly journals The edge geodetic self decomposition number of a graph

Author(s):  
John J ◽  
Stalin D

Let  G = (V, E)  be a simple connected  graph  of order  p and  size q.  A decomposition  of a graph  G is a collection  π  of edge-disjoint sub graphs  G1, G2, ..., Gn  of G such  that every  edge of G belongs to exactly  one Gi , (1 ≤ i ≤ n) . The decomposition  π = {G1, G2, ....Gn } of a connected  graph  G is said to be an edge geodetic self decomposi- tion  if ge (Gi ) = ge (G), (1 ≤ i ≤ n).The maximum  cardinality of π is called the edge geodetic self decomposition  number of G and is denoted by πsge (G), where ge (G) is the edge geodetic number  of G.  Some general properties   satisfied  by  this  concept  are  studied.    Connected  graphs which are edge geodetic self decomposable  are characterized.

2020 ◽  
Vol 12 (05) ◽  
pp. 2050064
Author(s):  
J. John ◽  
D. Stalin

Let [Formula: see text] be a simple connected graph of order [Formula: see text] and size [Formula: see text]. A decomposition of a graph [Formula: see text] is a collection of edge-disjoint subgraphs [Formula: see text] of [Formula: see text] such that every edge of [Formula: see text] belongs to exactly one [Formula: see text]. The decomposition [Formula: see text] of a connected graph [Formula: see text] is said to be an edge geodetic self-decomposition if [Formula: see text] for all [Formula: see text]. Some general properties satisfied by this concept are studied.


2019 ◽  
Vol 12 (01) ◽  
pp. 2050004
Author(s):  
J. John ◽  
M. S. Malchijah Raj

A Steiner set [Formula: see text] of a connected graph [Formula: see text] of order [Formula: see text] is a restrained Steiner set if either [Formula: see text] or the subgraph [Formula: see text] has no isolated vertices. The minimum cardinality of a restrained Steiner set of [Formula: see text] is the restrained Steiner number of [Formula: see text], and is denoted by [Formula: see text]. A restrained Steiner set [Formula: see text] in a connected graph [Formula: see text] is called a minimal restrained Steiner set if no proper subset of [Formula: see text] is a restrained Steiner set of [Formula: see text]. The upper restrained Steiner number [Formula: see text] is the maximum cardinality of a minimal restrained Steiner set of [Formula: see text]. The upper restrained Steiner number of certain classes of graphs are determined. Connected graphs of order [Formula: see text] with upper restrained Steiner number [Formula: see text] or [Formula: see text] are characterized. It is shown that for every pair of integers [Formula: see text] and [Formula: see text], with [Formula: see text], there exists a connected graph [Formula: see text] such that [Formula: see text] and [Formula: see text]. Also, it is shown that for every pair of integers [Formula: see text] and [Formula: see text] with [Formula: see text] there exists a connected graph [Formula: see text] with [Formula: see text] and [Formula: see text], where [Formula: see text] is the upper restrained geodetic number of the graph [Formula: see text].


2018 ◽  
Vol 10 (05) ◽  
pp. 1850069
Author(s):  
Nader Jafari Rad ◽  
Elahe Sharifi

The independence number of a graph [Formula: see text], denoted by [Formula: see text], is the maximum cardinality of an independent set of vertices in [Formula: see text]. [Henning and Löwenstein An improved lower bound on the independence number of a graph, Discrete Applied Mathematics  179 (2014) 120–128.] proved that if a connected graph [Formula: see text] of order [Formula: see text] and size [Formula: see text] does not belong to a specific family of graphs, then [Formula: see text]. In this paper, we strengthen the above bound for connected graphs with maximum degree at least three that have a non-cut-vertex of maximum degree. We show that if a connected graph [Formula: see text] of order [Formula: see text] and size [Formula: see text] has a non-cut-vertex of maximum degree then [Formula: see text], where [Formula: see text] is the maximum degree of the vertices of [Formula: see text]. We also characterize all connected graphs [Formula: see text] of order [Formula: see text] and size [Formula: see text] that have a non-cut-vertex of maximum degree and [Formula: see text].


2020 ◽  
Vol 39 (6) ◽  
pp. 1627-1647
Author(s):  
X. Lenin Xaviour ◽  
S. Robinson Chellathurai

A set S of vertices in a connected graph G = (V, E) is called a geodetic set if every vertex not in S lies on a shortest path between two vertices from S. A set D of vertices in G is called a dominating set of G if every vertex not in D has at least one neighbor in D. A set D is called a global dominating set in G if S is a dominating set of both G and Ḡ. A set S is called a geodetic global dominating set of G if S is both geodetic and global dominating set of G. A geodetic global dominating set S in G is called a minimal geodetic global dominating set if no proper subset of S is itself a geodetic global dominating set in G. The maximum cardinality of a minimal geodetic global dominating set in G is the upper geodetic global domination number Ῡg+(G) of G. In this paper, the upper geodetic global domination number of certain connected graphs are determined and some of the general properties are studied. It is proved that for all positive integers a, b, p where 3 ≤ a ≤ b < p, there exists a connected graph G such that Ῡg(G) = a, Ῡg+(G) = b and |V (G)| = p.


Author(s):  
J. John ◽  
V. R. Sunil Kumar

A set [Formula: see text] is called an open detour set of [Formula: see text] if for each vertex [Formula: see text] in [Formula: see text], either (1) [Formula: see text] is a detour simplicial vertex of [Formula: see text] and [Formula: see text] or (2) [Formula: see text] is an internal vertex of an [Formula: see text]-[Formula: see text] detour for some [Formula: see text]. An open detour set of minimum cardinality is called a minimum open detour set and this cardinality is the open detour number of [Formula: see text], denoted by [Formula: see text]. Connected graphs of order [Formula: see text] with open detour number [Formula: see text] or [Formula: see text] are characterized. It is shown that for any two positive integers [Formula: see text] and [Formula: see text] with [Formula: see text], there exists a connected graph [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] is the detour number of [Formula: see text]. It is also shown that for every pair of positive integers [Formula: see text] and [Formula: see text] with [Formula: see text] and [Formula: see text], there exists a connected graph [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] is the open geodetic number of [Formula: see text].


2019 ◽  
Vol 8 (4) ◽  
pp. 8723-8728

In this paper, we have investigated Zagreb index, F-index and neighbourhood degree based index for composition of two connected graphs in which one graph is obtained by using a new graph operation and other is a simple connected graph.


2021 ◽  
Vol 40 (3) ◽  
pp. 635-658
Author(s):  
J. John ◽  
V. Sujin Flower

Let G = (V, E) be a connected graph with at least three vertices. A set S ⊆ E(G) is called an edge-to-edge geodetic dominating set of G if S is both an edge-to-edge geodetic set of G and an edge dominating set of G. The edge-to-edge geodetic domination number γgee(G) of G is the minimum cardinality of its edge-to-edge geodetic dominating sets. Some general properties satisfied by this concept are studied. Connected graphs of size m with edge-to-edge geodetic domination number 2 or m or m − 1 are characterized. We proved that if G is a connected graph of size m ≥ 4 and Ḡ is also connected, then 4 ≤ γgee(G) + γgee(Ḡ) ≤ 2m − 2. Moreover we characterized graphs for which the lower and the upper bounds are sharp. It is shown that, for every pair of positive integers a, b with 2 ≤ a ≤ b, there exists a connected graph G with gee(G) = a and γgee(G) = b. Also it is shown that, for every pair of positive integers a and b with 2 < a ≤ b, there exists a connected graph G with γe(G) = a and γgee(G) = b, where γe(G) is the edge domination number of G and gee(G) is the edge-to-edge geodetic number of G.


Author(s):  
Süleyman Ediz

Topological indices have been used to modeling biological and chemical properties of molecules in quantitive structure property relationship studies and quantitive structure activity studies. All the degree based topological indices have been defined via classical degree concept. In this paper we define a novel degree concept for a vertex of a simple connected graph: S degree. And also we define S indices of a simple connected graph by using the S degree concept. We compute the S indices for well-known simple connected graphs such as paths, stars, complete graphs and cycles.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050029
Author(s):  
R. Lenin

A set [Formula: see text] is a near geodetic set if for every [Formula: see text] in [Formula: see text] there exist some [Formula: see text] in [Formula: see text] with [Formula: see text] The near geodetic number [Formula: see text] is the minimum cardinality of a near geodetic set in [Formula: see text] A subset [Formula: see text] of a minimum near geodetic set [Formula: see text] is called the forcing subset of [Formula: see text] if [Formula: see text] is the unique minimum near geodetic set containing [Formula: see text]. The forcing number [Formula: see text] of [Formula: see text] in [Formula: see text] is the minimum cardinality of a forcing subset for [Formula: see text], while the forcing near geodetic number [Formula: see text] of [Formula: see text] is the smallest forcing number among all minimum near geodetic sets of [Formula: see text]. In this paper, we initiate the study of forcing near geodetic number of connected graphs. We characterize graphs with [Formula: see text]. Further, we compare the parameters geodetic number[Formula: see text] near geodetic number[Formula: see text] forcing near geodetic number and we proved that, for every positive integers [Formula: see text] and [Formula: see text] with [Formula: see text] and [Formula: see text], there exists a nontrivial connected graph [Formula: see text] with [Formula: see text] [Formula: see text] and [Formula: see text].


For a connected graph a monophonic set of is said to be a complement connected monophonic set if or the subgraph is connected. The minimum cardinality of a complement connected monophonic set of is the complement connected monophonic number of and is denoted by A complement connected monophonic set in a connected graph is called a minimal complement connected monophonic set if no proper subset of is a complement connected monophonic set of . The upper complement connected monophonic number of is the maximum cardinality of a minimal complement connected monophonic set of . Some general properties under this concept are studied. The upper complement connected monophonic number of some standard graphs are determined. Some of its general properties are studied. It is shown that for any positive integers 2 ≤ a ≤b, there exists a connected graph such that ( ) = a and ( ) =b


Sign in / Sign up

Export Citation Format

Share Document