Wavelet transform analysis of heart rate variability to assess the autonomic changes associated with spontaneous coronary spasm of variant angina

2003 ◽  
Vol 36 (2) ◽  
pp. 117-124 ◽  
Author(s):  
Bi-Hua Tan ◽  
Hiroki Shimizu ◽  
Kenji Hiromoto ◽  
Yoshio Furukawa ◽  
Mitsumasa Ohyanagi ◽  
...  
1999 ◽  
Vol 22 (3) ◽  
pp. 201-206 ◽  
Author(s):  
Mario Petretta ◽  
Letizia Spinelli ◽  
Fortunato Marciano ◽  
Maria L. Vicario ◽  
Gianluca Testa ◽  
...  

2011 ◽  
Vol 57 (3) ◽  
pp. 395-400 ◽  
Author(s):  
Anton Popov ◽  
Yevgeniy Karplyuk ◽  
Volodymyr Fesechko

Estimation of Heart Rate Variability Fluctuations by Wavelet TransformTechnique for separate estimation of fast and slow fluctuations in the heart rate signal is developed. The orthogonal dyadic wavelet transform is used to separate the slow heart rate changes in approximation part of decomposition and fast changes in detail parts. Experimental results using the recordings from persons practicing Chi meditation demonstrated the applicability of estimation heart rate fluctuations with the proposed approach.


2015 ◽  
Vol 81 ◽  
pp. 56-64 ◽  
Author(s):  
U. Rajendra Acharya ◽  
K. Sudarshan Vidya ◽  
Dhanjoo N. Ghista ◽  
Wei Jie Eugene Lim ◽  
Filippo Molinari ◽  
...  

1999 ◽  
Vol 29 (6) ◽  
pp. 590 ◽  
Author(s):  
Hae Ok Jung ◽  
Ki Bae Seung ◽  
Hyo Young Lim ◽  
Dong Heon Kang ◽  
Ki Yuk Chang ◽  
...  

1999 ◽  
Vol 86 (3) ◽  
pp. 1081-1091 ◽  
Author(s):  
Vincent Pichot ◽  
Jean-Michel Gaspoz ◽  
Serge Molliex ◽  
Anestis Antoniadis ◽  
Thierry Busso ◽  
...  

Heart rate variability is a recognized parameter for assessing autonomous nervous system activity. Fourier transform, the most commonly used method to analyze variability, does not offer an easy assessment of its dynamics because of limitations inherent in its stationary hypothesis. Conversely, wavelet transform allows analysis of nonstationary signals. We compared the respective yields of Fourier and wavelet transforms in analyzing heart rate variability during dynamic changes in autonomous nervous system balance induced by atropine and propranolol. Fourier and wavelet transforms were applied to sequences of heart rate intervals in six subjects receiving increasing doses of atropine and propranolol. At the lowest doses of atropine administered, heart rate variability increased, followed by a progressive decrease with higher doses. With the first dose of propranolol, there was a significant increase in heart rate variability, which progressively disappeared after the last dose. Wavelet transform gave significantly better quantitative analysis of heart rate variability than did Fourier transform during autonomous nervous system adaptations induced by both agents and provided novel temporally localized information.


Sign in / Sign up

Export Citation Format

Share Document