Fibrin-based engineered heart tissue for cardiac repair: Initial results after transplantation

2011 ◽  
Vol 59 (S 01) ◽  
Author(s):  
L Conradi ◽  
A Vogelsang ◽  
A Hansen ◽  
A Eder ◽  
M Hirt ◽  
...  
JCI Insight ◽  
2021 ◽  
Vol 6 (15) ◽  
Author(s):  
Richard J. Jabbour ◽  
Thomas J. Owen ◽  
Pragati Pandey ◽  
Marina Reinsch ◽  
Brian Wang ◽  
...  

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Christina Rogge ◽  
Michael Didié ◽  
Erich Wettwer ◽  
Ursula Ravens ◽  
Ralph Graichen ◽  
...  

Engineered Heart Tissue (EHT) from neonatal rat cardiomyocytes has been used successfully as in vitro model and in cardiac repair. Here, we hypothesized that human embryonic stem cells (hESC) can be used to generate EHT with properties of native myocardium. Methods: hESC (hES3-ENVY) were differentiated in embryoid bodies, enzymatically dispersed, and subjected to EHT-generation in circular casting molds (1.5x10 6 cells, 0.4 mg collagen, 10% Matrigel/EHT; inner/outer diameter - 2/4 mm). Contractile function was assessed 10 days after casting under isometric conditions (37°C, 1.5 Hz, Tyrode’s solution). Action potentials (AP) were recorded in spontaneously contracting EHTs with intracellular electrodes (37°C, Tyrode’s solution). Calcium gradients were assessed by confocal laser scanning microscopy (CLSM) after rhod-2 loading. EHT-morphology was examined by CLSM and electron microscopy (EM). Results: hESC-EHTs contracted synchronously and spontaneously at 1.1±0.1 Hz (n=3). Increasing concentrations of extracellular calcium (0.2–2.4 mM) enhanced force of contraction from 53±8 to 199±22 μN (n=8, p<0.05; EC 50 : 0.8±0.04 mM). Isoprenaline (1 μM) at 0.4 mM calcium increased twitch tension from 61±7 to 108±15 μN (n=8, p<0.05) and shortened relaxation time from 111±6 to 87±4 ms (n=3, p<0.05). Cardiomyocytes within EHTs formed a functional syncytium composed of predominantly oriented muscle strands with a high degree of sarcomere differentiation (CLSM, EM). Cell-cell contacts through adherens junctions were identified by EM. Synchronous calcium gradient spread in spontaneously contracting EHTs indicated electrical coupling of individual cells within the multicellular constructs. AP recordings identified pacemaker cells (spontaneous diastolic depolarization) and cells with a flat phase 4 of the AP (working myocardium-like cells). Pharmacological studies demonstrated the presence and functional relevance of I Na (10–30 μM flecainide), I Ca (1 μM nisoldipine), and I Kr (1–5 μM E4031). Conclusion: Human force-generating EHT with functional and morphological properties of native myocardium can be generated. Ultimately, hESC-EHTs may constitute a model system for substance screening and could further be utilized in cardiac repair.


2014 ◽  
Vol 62 (S 01) ◽  
Author(s):  
S. Pecha ◽  
F. Weinberger ◽  
K. Breckwoldt ◽  
B. Geertz ◽  
J. Starbatty ◽  
...  

2016 ◽  
Vol 8 (363) ◽  
pp. 363ra148-363ra148 ◽  
Author(s):  
F. Weinberger ◽  
K. Breckwoldt ◽  
S. Pecha ◽  
A. Kelly ◽  
B. Geertz ◽  
...  

2014 ◽  
Vol 33 (4) ◽  
pp. S108-S109
Author(s):  
S. Pecha ◽  
F. Weinberger ◽  
K. Breckwoldt ◽  
B. Geertz ◽  
J. Starbatty ◽  
...  

2013 ◽  
Vol 61 (S 01) ◽  
Author(s):  
L Conradi ◽  
S Schmidt ◽  
L Peters ◽  
A Eder ◽  
A Hansen ◽  
...  

2019 ◽  
Vol 92 ◽  
pp. 145-159 ◽  
Author(s):  
Idit Goldfracht ◽  
Yael Efraim ◽  
Rami Shinnawi ◽  
Ekaterina Kovalev ◽  
Irit Huber ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0208342
Author(s):  
Fabian Jacob ◽  
Amina Y. Yonis ◽  
Friederike Cuello ◽  
Pradeep Luther ◽  
Thomas Schulze ◽  
...  

2006 ◽  
Vol 12 (4) ◽  
pp. 452-458 ◽  
Author(s):  
Wolfram-Hubertus Zimmermann ◽  
Ivan Melnychenko ◽  
Gerald Wasmeier ◽  
Michael Didié ◽  
Hiroshi Naito ◽  
...  

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Daniel Biermann ◽  
Michael Didié ◽  
Bijoy Chandapillai Karikkineth ◽  
Claudia Lange ◽  
Thomas Eschenhagen ◽  
...  

Engineered Heart Tissue (EHT) can be utilized to partially repair infarcted myocardium in rats. Here, we investigated the feasibility of EHT-grafts as transmural wall replacement in a heterotopic transplantation model. Methods: EHTs (diameter: 15 mm, thickness: 1– 4 mm) were generated from 12.5 ×10 6 neonatal rat heart cells, collagen type I, and matrigel. Similarly, non-contractile constructs were generated from rat cardiac fibroblasts (FB) and mesenchymal stem cells (MSC). Grafts were surgically inserted into large transmural defects (diameter: 6 mm) in the left ventricle of explanted donor hearts. Subsequently, “treated” hearts were transplanted into weight-matched (308±12 g; n=14), immune suppressed (cyclosporine, azathioprine, prednisolone) Wistar rats in heterotopic position. All transmural defects were also covered with an aortic patch to prevent bleeding from the ventricles. Sham surgeries included aortic patch implantations only. Heterotopic hearts were harvested after 28 days and subjected to morphological analyses by confocal laser scanning microscopy (CLSM). Results: Heart transplant weight at the time of implantation was 1.1±0.02 g (n=14). Heterotopic heart weight increased substantially in Sham (2.4±0.3 g, n=3) and FB-graft (2.1±0.1 g, n=3) animals, whereas MSC- (1.7±0.2 g, n=4) and EHT-graft (1.3±0.1 g, n=4; p<0.05 vs. Sham) animals showed a smaller or no increase in weight, respectively. EHT grafts remained contractile throughout the observation period. CLSM revealed that EHT-grafts established oriented muscle bundles (actin and actinin staining) inside the transmural defects and were strongly vascularized (CD31 and smooth muscle actin staining; lectin labeling) leading to partial reconstitution of the myocardial continuity. This was not observed in animals with FB- and MSC-grafts. However, MSC-grafts, but not FB-grafts, contained newly formed vessels with a markedly larger diameter than observed in EHT-grafts (21±6 vs. 5±0.7 μm; p<0.05). Conclusion: EHTs can be utilized as myocardial tissue grafts to reconstruct and prevent pathological enlargement of the left ventricle. This study constitutes a first step to establish a novel transmural myocardial repair technology involving fully bioengineered heart muscle.


Sign in / Sign up

Export Citation Format

Share Document