Novel Noncovalent Interactions in Catalysis: A Focus on Halogen, Chalcogen, and Anion-π Bonding

Synthesis ◽  
2017 ◽  
Vol 49 (15) ◽  
pp. 3224-3236 ◽  
Author(s):  
Martin Breugst ◽  
Daniel von der Heiden ◽  
Julie Schmauck

Noncovalent interactions play an important role in many biological and chemical processes. Among these, hydrogen bonding is very well studied and is already routinely used in organocatalysis. This Short Review focuses on three other types of promising noncovalent interactions. Halogen bonding, chalcogen bonding, and anion-π bonding have been introduced into organocatalysis in the last few years and could become important alternate modes of activation to hydrogen bonding in the future.1 Introduction2 Halogen Bonding3 Chalcogen Bonding4 Anion-π Bonding5 Conclusions

2017 ◽  
Author(s):  
Manoj Kumar Kesharwani ◽  
Nitai Sylvetsky ◽  
Debashree Manna ◽  
Jan M.L. Martin

<p>We have re-evaluated the X40x10 benchmark for halogen bonding using conventional and explicitly correlated coupled cluster methods. For the aromatic dimers at small separation, improved CCSD(T)–MP2 “high-level corrections” (HLCs) cause substantial reductions in the dissociation energy. For the bromine and iodine species, (n-1)d subvalence correlation increases dissociation energies, and turns out to be more important for noncovalent interactions than is generally realized. As in previous studies, we find that the most efficient way to obtain HLCs is to combine (T) from conventional CCSD(T) calculations with explicitly correlated CCSD-F12–MP2-F12 differences.</p>


2020 ◽  
Vol 07 ◽  
Author(s):  
Neslihan Demirbas ◽  
Ahmet Demirbas

Background: Since the discovery of metal-free catalysts or organocatalysts about twenty years ago, a number of small molecules with different structures have been using to accelerate organic transformations. With the development of environmental awareness, in order to obtain highly privileged scaffolds, scientists have directed their studies towards the synthetic methodologies which minimize or preferably eliminate the formation of waste, avoid from toxic solvents and reagents and use renewable starting materials as far as possible. Methods: In this connection, the organocatalytic reactions providing efficiency and selectivity for most of case have become an endless topic in organic chemistry since several advantages from both practical and environmental standpoints. Organocatalysts supplying transformation of reactants into products with the least possible waste production have been serving to the concept of green chemistry. Results and Conclusion: Organocatalysts have been classified on the basis of their binding capacity to the substrate with covalently or noncovalent interactions involving hydrogen bonding and electrostatic interaction. Diverse types of small organic compounds including proline and its derivatives, phase-transfer catalysts, (thio)urease, phosphoric acids, sulfones, N-oxides, guanidines, cinchona derivatives, aminoindanol and amino acids have been utilized as hydrogen bonding organocatalysts in different chemical transformations.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Shouvik Chattopadhyay ◽  
Tanmoy Basak ◽  
Antonio Frontera

Two mononuclear iron(III) complexes, [FeL1Cl]∙CH3CN (1) and [FeL2(N3)] (2) {H2L1= N,N′-bis(5-chlorosalicylidene)diethylenetriamine and H2L2= N,N′-bis(5-bromosalicylidene)diethylenetriamine}, have been synthesized and characterized by X-ray crystallographic studies. In the solid state, there are strong...


2020 ◽  
Author(s):  
Rafael Nunes ◽  
Diogo Vila Viçosa ◽  
Paulo J. Costa

<div>Halogen bonds (HaBs) are noncovalent interactions where halogen atoms act as electrophilic species interacting with Lewis bases. These interactions are relevant in biochemical systems being increasingly explored in drug discovery, mainly to modulate protein–ligand interactions. In this work, we report evidence for the existence of HaB-mediated halogen–phospholipid recognition phenomena as our molecular dynamics simulations support the existence of favorable interactions between halobenzene derivatives and both phosphate (PO) or ester (CO) oxygen acceptors from model phospholipid bilayers, thus providing insights into the role of HaBs in driving the permeation of halogenated drug like molecules across biological membranes. This represents a relevant molecular mechanism, previously overlooked, determining the pharmacological activity of halogenated molecules with implications in drug discovery and development, a place where halogenated molecules account for a significant part of the chemical space. Our data also shows that, as the ubiquitous hydrogen bond, HaBs should be accounted for in the development of membrane permeability models.</div>


Author(s):  
Suresh Suganya ◽  
Kandasamy Saravanan ◽  
Ramakrishnan Jaganathan ◽  
Poomani Kumaradhas

The intermolecular interactions and salt formation of acridine with 4-aminosalicylic acid, 5-chlorosalicylic acid and hippuric acid were investigated. The salts obtained were acridin-1-ium 4-aminosalicylate (4-amino-2-hydroxybenzoate), C13H10N+·C7H6NO3 − (I), acridin-1-ium 5-chlorosalicylate (5-chloro-2-hydroxybenzoate), C13H10N+·C7H4ClO3 − (II), and acridin-1-ium hippurate (2-benzamidoacetate) monohydrate, C13H10N+·C9H8NO3 −·H2O (III). Acridine is involved in strong intermolecular interactions with the hydroxy group of the three acids, enabling it to form supramolecular assemblies. Hirshfeld surfaces, fingerprint plots and enrichment ratios were generated and investigated, and the intermolecular interactions were analyzed, revealing their quantitative contributions in the crystal packing of salts I, II and III. A quantum theory of atoms in molecules (QTAIM) analysis shows the charge–density distribution of the intermolecular interactions. The isosurfaces of the noncovalent interactions were studied, which allows visualization of where the hydrogen-bonding and dispersion interactions contribute within the crystal.


2020 ◽  
Vol 59 (2) ◽  
pp. 811-818 ◽  
Author(s):  
Pellegrino La Manna ◽  
Margherita De Rosa ◽  
Carmen Talotta ◽  
Antonio Rescifina ◽  
Giuseppe Floresta ◽  
...  

2020 ◽  
Vol 02 (01) ◽  
pp. 047-063 ◽  
Author(s):  
Nelson Ricardo Ávila-Rovelo ◽  
Amparo Ruiz-Carretero

Supramolecular approaches are of great interest in the design of functional materials. The types of aggregates arising from different noncovalent interactions endow materials with intriguing properties. In this sense, J-type aggregates are very attractive due to their unique optical properties and capacity to transport excitons. These features make them great candidates in the design of materials for organic electronic devices. Furthermore, the incorporation of additional hydrogen-bonding functionalities provides J-aggregates with superior directionality and connection among the different π-conjugated cores. The control over the formation of H-bonds to achieve functional aggregates is therefore a promising strategy towards controlled structures with specific functions.This review outlines the most relevant and recent works of π-conjugated systems exhibiting J-type aggregates resulting from hydrogen-bonding interactions. Different types of hydrogen-bonding functionalities will be discussed together with their roles in the aggregate properties, their impact in the optoelectronic properties, the self-assembly mechanisms, and their applications in organic electronics.


Sign in / Sign up

Export Citation Format

Share Document