j aggregates
Recently Published Documents


TOTAL DOCUMENTS

889
(FIVE YEARS 122)

H-INDEX

58
(FIVE YEARS 7)

2022 ◽  
Vol 130 (2) ◽  
pp. 237
Author(s):  
А.Г. Мирочник ◽  
Е.В. Федоренко ◽  
А.Ю. Белолипцев

The processes of the formation of J-aggregates during the dissolution 2,2-difluoro-4,6-di(4’-methylphenyl)-1,3,2-dioxaborine crystals (1) and their subsequent dissociation have been studied by absorption and luminescence spectroscopy and quantum-chemical modeling. It is shown that two luminescent centers are observed in the solution 1: monomeric luminescence and luminescence of J-aggregates (dual luminescence). Evolution of absorption, luminescence excitation and luminescence spectra is observed over time, indicating a slow dissociation of J-aggregates.


2021 ◽  
Author(s):  
Ulugbek Barotov ◽  
Megan Klein ◽  
Lili Wang ◽  
Moungi Bawendi

Coupling of excitations between organic fluorophores in J-aggregates leads to coherent delocalization of excitons across multiple molecules, resulting in materials with high extinction coefficients, long-range exciton transport, and, in particular, short radiative lifetimes. Despite these favorable optical properties, uses of J-aggregates as high-speed light sources have been hindered by their low photoluminescence quantum yields. Here, we take a bottom-up approach to design a novel J-aggregate system with a large extinction coefficient, a high quantum yield and a short lifetime. To achieve this goal, we first select a J-aggregating cyanine chromophore and reduce its nonradiative pathways by rigidifying the backbone of the cyanine dye. The resulting conformationally-restrained cyanine dye exhibits strong absorbance at 530 nm and fluorescence at 550 nm with 90% quantum yield and 2.3 ns lifetime. We develop optimal conditions for the self-assembly of highly emissive J-aggregates. Cryogenic transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS) reveal micron-scale extended structures with 2D sheet-like morphology, indicating long-range structural order. These novel J-aggregates have a strong red-shifted absorption at 600 nm, resonant fluorescence with no Stokes shift, 50% quantum yield, and 220 ps lifetime at room temperature. We further stabilize these aggregates in a glassy sugar matrix and study their excitonic behavior using temperature-dependent absorption and fluorescence spectroscopy. These temperature- dependent studies confirm J-type excitonic coupling and superradiance. Our results have implications for the development of a new generation of organic fluorophores that combine high speed, high quantum yield and solution processing.


2021 ◽  
pp. 118557
Author(s):  
Dzmitry Melnikau ◽  
Pavel Samokhvalov ◽  
Ana Sánchez-Iglesias ◽  
Marek Grzelczak ◽  
Igor Nabiev ◽  
...  

2021 ◽  
Author(s):  
Gabriele Selvaggio ◽  
Robert Nißler ◽  
Peter Nietmann ◽  
Atanu Patra ◽  
Lukas Jacek Patalag ◽  
...  

Near-infrared (NIR) fluorophores are emerging tools for biophotonics because of their reduced scattering, increased tissue penetration and low phototoxicity. However, the library of NIR fluorophores is still limited. Here, we report the NIR fluorescence of two benzene-fused oligo-BODIPYs in their hexameric (H) and octameric (O) forms. These dyes emit bright NIR fluorescence (H: maxima 943/1075 nm, O: maxima 976/1115 nm) that can be excited in the NIR (H = 921 nm, O = 956 nm) or non-resonantly over a broad range in the visible region. The emission bands of H show a bathochromic shift and peak sharpening with increasing dye concentration suggesting the presence of J-aggregates. Furthermore, the emission maxima of both H and O shift up to 20 nm in solvents of different polarity. These dyes can be used as NIR ink and imaged remotely on the macroscopic level with a stand-off distance of 20 cm. We furthermore demonstrate their versatility for biophotonics by coating microscale beads and performing microrheology via NIR video particle tracking (NIR-VPT) in biopolymer (F-actin) networks. No photodamaging of the actin filaments takes place, which is typically observed for visible fluorophores and highlights the advantages of these NIR dyes.


2021 ◽  
Author(s):  
Arundhati Deshmukh ◽  
Niklas Geue ◽  
Nadine Bradbury ◽  
Timothy Atallah ◽  
Chern Chuang ◽  
...  

Molecular aggregates with long-range excitonic couplings have drastically different photophysical properties compared to their monomer counterparts. From Kasha’s model for 1-dimensional systems, positive or negative excitonic couplings lead to blue or red shifted optical spectra with respect to the monomers, labelled H-and J-aggregates respectively. The overall excitonic couplings in higher dimensional systems are much more complicated and cannot be simply classified from their spectral shifts alone. Here, we provide a unified classification for extended 2D aggregates using temperature dependent peak shifts, thermal broadening and quantum yields. We discuss the examples of six 2D aggregates with J-like absorption spectra but quite drastic changes quantum yields and superradiance. We find the origin of the differences is, in fact, a different excitonic band structure where the bright state is lower energy than the monomer but still away from the band edge. We call this an ‘I-aggregate’. Our results provide a description of the complex excitonic behaviors that cannot be explained solely on Kasha’s model. Further, such properties can be tuned with the packing geometries within the aggregates providing supramolecular pathways for controlling them. This will allow for precise optimizations of aggregate properties in their applications across the areas of optoelectronics, photonics, excitonic energy transfer, and shortwave infrared technologies.


2021 ◽  
Author(s):  
Arundhati Deshmukh ◽  
Niklas Geue ◽  
Nadine Bardbury ◽  
Timothy Atallah ◽  
Chern Chuang ◽  
...  

Molecular aggregates with long-range excitonic couplings have drastically different photophysical properties compared to their monomer counterparts. From Kasha’s model for 1-dimensional systems, positive or negative excitonic couplings lead to blue or red shifted optical spectra with respect to the monomers, labelled H-and J-aggregates respectively. The overall excitonic couplings in higher dimensional systems are much more complicated and cannot be simply classified from their spectral shifts alone. Here, we provide a unified classification for extended 2D aggregates using temperature dependent peak shifts, thermal broadening and quantum yields. We discuss the examples of six 2D aggregates with J-like absorption spectra but quite drastic changes quantum yields and superradiance. We find the origin of the differences is, in fact, a different excitonic band structure where the bright state is lower energy than the monomer but still away from the band edge. We call this an ‘I-aggregate’. Our results provide a description of the complex excitonic behaviors that cannot be explained solely on Kasha’s model. Further, such properties can be tuned with the packing geometries within the aggregates providing supramolecular pathways for controlling them. This will allow for precise optimizations of aggregate properties in their applications across the areas of optoelectronics, photonics, excitonic energy transfer, and shortwave infrared technologies.


Sign in / Sign up

Export Citation Format

Share Document