scholarly journals Sharpening Up Your Spectra: Broadband Homonuclear Decoupling in HSQC by Real-Time Pure Shift Acquisition

Synlett ◽  
2019 ◽  
Vol 30 (09) ◽  
pp. 1015-1025 ◽  
Author(s):  
Peter Kiraly ◽  
Gareth Morris ◽  
Liu Quanxiu ◽  
Mathias Nilsson

Structure elucidation using NMR spectroscopy has become a vital part of the toolkit of modern synthetic chemistry. Characterisation of final products, quality control of production, analysis of complex mixtures in synthetic method development, and structure elucidation of isolated natural products are examples where NMR spectroscopy is a part of daily routine. The two factors that usually limit the applicability of NMR are resolution and sensitivity. The experimental method described in this Account, real-time pure shift acquisition, yields heteronuclear correlation spectra such as HSQC that offer significant improvements in both resolution and sensitivity, at negligible cost to the analyst. The advantages that real-time pure shift acquisition enjoys over conventional experiments are discussed and illustrated with selected examples including carbohydrate and alkaloid mixtures. Advanced data acquisition and processing techniques that reduce experiment time and are easily combined with pure shift NMR methods are also described.1 Introduction2 Simultaneous Sensitivity and Resolution Enhancement Using Real-Time Acquisition in HSQC3 Processing Pure Shift Data4 Pulse Sequences for Real-Time Pure Shift HSQC5 Conclusions and Future Perspectives

RSC Advances ◽  
2015 ◽  
Vol 5 (47) ◽  
pp. 37138-37148 ◽  
Author(s):  
Marie Hoffmann ◽  
Solène Miaskiewicz ◽  
Jean-Marc Weibel ◽  
Patrick Pale ◽  
Aurélien Blanc

Although one of the first 2D NMR methods, but so far neglected, selectiveJ-resolved NMR spectroscopy offers a unique opportunity to help organic chemists in structure elucidation, avoiding natural and non-natural product misassignments.


Planta Medica ◽  
2014 ◽  
Vol 80 (10) ◽  
Author(s):  
S Groscurth ◽  
T Kühn ◽  
P Kessler ◽  
V Rukachaisirikul

2020 ◽  
Vol 27 ◽  
Author(s):  
Marian Vincenzi ◽  
Flavia Anna Mercurio ◽  
Marilisa Leone

Background: NMR spectroscopy is one of the most powerful tools to study the structure and interaction properties of peptides and proteins from a dynamic perspective. Knowing the bioactive conformations of peptides is crucial in the drug discovery field to design more efficient analogue ligands and inhibitors of protein-protein interactions targeting therapeutically relevant systems. Objective: This review provides a toolkit to investigate peptide conformational properties by NMR. Methods: Articles cited herein, related to NMR studies of peptides and proteins were mainly searched through Pubmed and the web. More recent and old books on NMR spectroscopy written by eminent scientists in the field were consulted as well. Results: The review is mainly focused on NMR tools to gain the 3D structure of small unlabeled peptides. It is more application-oriented as it is beyond its goal to deliver a profound theoretical background. However, the basic principles of 2D homonuclear and heteronuclear experiments are briefly described. Protocols to obtain isotopically labeled peptides and principal triple resonance experiments needed to study them, are discussed as well. Conclusion: NMR is a leading technique in the study of conformational preferences of small flexible peptides whose structure can be often only described by an ensemble of conformations. Although NMR studies of peptides can be easily and fast performed by canonical protocols established a few decades ago, more recently we have assisted to tremendous improvements of NMR spectroscopy to investigate instead large systems and overcome its molecular weight limit.


Biochemistry ◽  
2000 ◽  
Vol 39 (27) ◽  
pp. 7910-7919 ◽  
Author(s):  
Clemens Steegborn ◽  
Henriette Schneider-Hassloff ◽  
Markus Zeeb ◽  
Jochen Balbach

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Georg Künze ◽  
Daniel Huster ◽  
Sergey A. Samsonov

Abstract The interaction of regulatory proteins with extracellular matrix or cell surface-anchored glycosaminoglycans (GAGs) plays important roles in molecular recognition, wound healing, growth, inflammation and many other processes. In spite of their high biological relevance, protein-GAG complexes are significantly underrepresented in structural databases because standard tools for structure determination experience difficulties in studying these complexes. Co-crystallization with subsequent X-ray analysis is hampered by the high flexibility of GAGs. NMR spectroscopy experiences difficulties related to the periodic nature of the GAGs and the sparse proton network between protein and GAG with distances that typically exceed the detection limit of nuclear Overhauser enhancement spectroscopy. In contrast, computer modeling tools have advanced over the last years delivering specific protein-GAG docking approaches successfully complemented with molecular dynamics (MD)-based analysis. Especially the combination of NMR spectroscopy in solution providing sparse structural constraints with molecular docking and MD simulations represents a useful synergy of forces to describe the structure of protein-GAG complexes. Here we review recent methodological progress in this field and bring up examples where the combination of new NMR methods along with cutting-edge modeling has yielded detailed structural information on complexes of highly relevant cytokines with GAGs.


2008 ◽  
Vol 27 (2) ◽  
pp. 267-275 ◽  
Author(s):  
Stephen R. Yutzy ◽  
Jeffrey L. Duerk

Sign in / Sign up

Export Citation Format

Share Document