Characteristics of Accessory Carpal Bone Fractures in 50 Racing Greyhounds

1988 ◽  
Vol 01 (02) ◽  
pp. 104-107 ◽  
Author(s):  
D. L. Piermattei ◽  
Ph. E. Davis ◽  
Ch. R. Bellenger ◽  
K. A. Johnson

Fifty racing greyhounds with fracture of the accessory carpal bone presented to the Veterinary Teaching Hospitals at The University of Sydney (n = 35) and Colorado State University (n = 15) were reviewed for the purpose of identifying the frequency of the various fracture types, and to suggest possible factors which predispose to the injuries. All but three fractures occurred while the dogs were racing. All dogs raced on elliptical tracks in a counterclockwise direction, and this was implicated in the pathogenesis and anatomical distribution of these fractures.

Synlett ◽  
2021 ◽  
Vol 32 (02) ◽  
pp. 140-141
Author(s):  
Louis-Charles Campeau ◽  
Tomislav Rovis

obtained his PhD degree in 2008 with the late Professor Keith Fagnou at the University of Ottawa in Canada as an NSERC Doctoral Fellow. He then joined Merck Research Laboratories at Merck-Frosst in Montreal in 2007, making key contributions to the discovery of Doravirine (MK-1439) for which he received a Merck Special Achievement Award. In 2010, he moved from Quebec to New Jersey, where he has served in roles of increasing responsibility with Merck ever since. L.-C. is currently Executive Director and the Head of Process Chemistry and Discovery Process Chemistry organizations, leading a team of smart creative scientists developing innovative chemistry solutions in support of all discovery, pre-clinical and clinical active pharmaceutical ingredient deliveries for the entire Merck portfolio for small-molecule therapeutics. Over his tenure at Merck, L.-C. and his team have made important contributions to >40 clinical candidates and 4 commercial products to date. Tom Rovis was born in Zagreb in former Yugoslavia but was largely raised in southern Ontario, Canada. He earned his PhD degree at the University of Toronto (Canada) in 1998 under the direction of Professor Mark Lautens. From 1998–2000, he was an NSERC Postdoctoral Fellow at Harvard University (USA) with Professor David A. Evans. In 2000, he began his independent career at Colorado State University and was promoted in 2005 to Associate Professor and in 2008 to Professor. His group’s accomplishments have been recognized by a number of awards including an Arthur C. Cope Scholar, an NSF CAREER Award, a Fellow of the American Association for the Advancement of Science and a ­Katritzky Young Investigator in Heterocyclic Chemistry. In 2016, he moved to Columbia University where he is currently the Samuel Latham Mitchill Professor of Chemistry.


Author(s):  
Douglass Taber

Since five-membered ring ethers often do not show good selectivity on equilibration, single diastereomers are best formed under kinetic control. Aaron Aponick of the University of Florida demonstrated (Organic Lett. 2008, 10, 669) that under gold catalysis, the allylic alcohol 1 cyclized to 2 with remarkable diastereocontrol. Six-membered rings also formed with high cis stereocontrol. Ian Cumpstey of Stockholm University showed (Chem. Commun. 2008, 1246) that with protic acid, allylic acetates such as 3 cyclized with clean inversion at the allylic center, and concomitant debenzylation. J. Stephen Clark of the University of Glasgow found (J. Org. Chem. 2008, 73, 1040) that Rh catalyzed cyclization of 5 proceeded with high selectivity for insertion into Ha, leading to the alcohol 6. Saumen Hajra of the Indian Institute of Technology, Kharagpur took advantage (J. Org. Chem. 2008, 73, 3935) of the reactivity of the aldehyde of 7, effecting selective addition of 7 to 8, to deliver, after reduction, the lactone 9. Tomislav Rovis of Colorado State University observed (J. Org. Chem. 2008, 73, 612) that 10 could be cyclized selectively to either 11 or 12. Nadège Lubin-Germain, Jacques Uziel and Jacques Augé of the University of Cergy- Pontoise devised (Organic Lett. 2008, 10, 725) conditions for the indium-mediated coupling of glycosyl fluorides such as 13 with iodoalkynes such as 14 to give the axial C-glycoside 15. Katsukiyo Miura and Akira Hosomi of the University of Tsukuba employed (Chemistry Lett. 2008, 37, 270) Pt catalysis to effect in situ equilibration of the alkene 16 to the more stable regioisomer. Subsequent condensation with the aldehyde 17 led via Prins cyclization to the ether 18. Paul E. Floreancig of the University of Pittsburgh showed (Angew. Chem. Int. Ed. 2008, 47, 4184) that Prins cyclization could be also be initiated by oxidation of the benzyl ether 19 to the corresponding carbocation. Chan-Mo Yu of Sungkyunkwan University developed (Organic Lett. 2008, 10, 265) a stereocontrolled route to seven-membered ring ethers, by Pd-mediated stannylation of allenes such as 21, followed by condensation with an aldehyde.


Author(s):  
Douglass F. Taber

Varinder K. Aggarwal of the University of Bristol described (Angew. Chem. Int. Ed. 2010, 49, 6673) the conversion of the Sharpless-derived epoxide 1 into the cyclopropane 2. Christopher D. Bray of Queen Mary University of London established (Chem. Commun. 2010, 46, 5867) that the related conversion of 3 to 5 proceeded with high diastereocontrol. Javier Read de Alaniz of the University of California, Santa Barbara, extended (Angew. Chem. Int. Ed. 2010, 49, 9484) the Piancatelli rearrangement of a furyl carbinol 6 to allow inclusion of an amine 7, to give 8. Issa Yavari of Tarbiat Modares University described (Synlett 2010, 2293) the dimerization of 9 with an amine to give 10. Jeremy E. Wulff of the University of Victoria condensed (J. Org. Chem. 2010, 75, 6312) the dienone 11 with the commercial butadiene sulfone 12 to give the highly substituted cyclopentane 13. Robert M. Williams of Colorado State University showed (Tetrahedron Lett. 2010, 51, 6557) that the condensation of 14 with formaldehyde delivered the cyclopentanone 15 with high diastereocontrol. D. Srinivasa Reddy of Advinus Therapeutics devised (Tetrahedron Lett. 2010, 51, 5291) conditions for the tandem conjugate addition/intramolecular alkylation conversion of 16 to 17. Marie E. Krafft of Florida State University reported (Synlett 2010, 2583) a related intramolecular alkylation protocol. Takao Ikariya of the Tokyo Institute of Technology effected (J. Am. Chem. Soc. 2010, 132, 11414) the enantioselective Ru-mediated hydrogenation of bicyclic imides such as 18. This transformation worked equally well for three-, four-, five-, six-, and seven-membered rings. Stefan France of the Georgia Institute of Technology developed (Org. Lett. 2010, 12, 5684) a catalytic protocol for the homo-Nazarov rearrangement of the doubly activated cyclopropane 20 to the cyclohexanone 21. Richard P. Hsung of the University of Wisconsin effected (Org. Lett. 2010, 12, 5768) the highly diastereoselective rearrangement of the triene 22 to the cyclohexadiene 23. Strategies for polycyclic construction are also important. Sylvain Canesi of the Université de Québec devised (Org. Lett. 2010, 12, 4368) the oxidative cyclization of 24 to 25.


Author(s):  
Douglass F. Taber

Ramón Gómez Arrayás and Juan C. Carretero of the Universidad Autónoma de Madrid effected (Chem. Commun. 2011, 47, 6701) enantioselective conjugate borylation of an unsaturated sulfone 1, leading to the alcohol 2. Robert E. Gawley of the University of Arkansas found (J. Am. Chem. Soc. 2011, 133, 19680) conditions for enantioselective ketone reduction that were selective enough to distinguish between the ethyl and propyl groups of 3 to give 4. Vicente Gotor of the Universidad de Oviedo used (Angew. Chem. Int. Ed. 2011, 50, 8387) an overexpressed Baeyer-Villiger monoxygenase to prepare 6 by dynamic kinetic resolution of 5. Li Deng of Brandeis University prepared (J. Am. Chem. Soc. 2011, 133, 12458) 8 in high ee by kinetic enantioselective migration of the alkene of racemic 7. Bernhard Breit of the Freiburg Institute for Advanced Studies established (J. Am. Chem. Soc. 2011, 133, 20746) the oxygenated quaternary center of 10 by the addition of benzoic acid to the allene 9. Keith R. Fandrick of Boehringer Ingelheim constructed (J. Am. Chem. Soc. 2011, 133, 10332) the oxygenated quaternary center of 13 by enantioselective addition of the propargylic nucleophile 12 to 11. Yian Shi of Colorado State University devised (J. Am. Chem. Soc. 2011, 133, 12914) conditions for the enantioselective transamination of the α-keto ester 14 to the amine 15. Professor Deng added (Adv. Synth. Catal. 2011, 353, 3123) 18 to an enone 17 to give the protected amine 19. Song Ye of the Institute of Chemistry, Beijing effected (J. Am. Chem. Soc. 2011, 133, 15894) elimination/addition of an unsaturated acid chloride 20 to give the γ-amino acid derivative 22. Frank Glorius of the Universität Münster added (Angew. Chem. Int. Ed. 2011, 50, 1410) an aldehyde 23 to 24 to give the amide 25. Sentaro Okamoto of Kanagawa University designed (J. Org. Chem. 2011, 76, 6678) an organocatalyst for the enantioselective Steglich rearrangement of 26, creating the aminated quaternary center of 27. Most impressive of all was the report (Org. Lett. 2011, 13, 5460) by Hélène Lebel of the Université de Montréal of the direct enantioselective C–H amination of 28 to give 29.


Author(s):  
Tristan H. Lambert

The enantioselective bromocyclization of dicarbonyl 1 to form dihydrofuran 3 using thiocarbamate catalyst 2 was developed (Angew. Chem. Int. Ed. 2013, 52, 8597) by Ying-Yeung Yeung at the National University of Singapore. Access to dihydrofuran 5 from the cyclic boronic acid 4 and salicylaldehyde via a morpholine-mediated Petasis borono-Mannich reaction was reported (Org. Lett. 2013, 15, 5944) by Xian-Jin Yang at East China University of Science and Technology and Jun Yang at the Shanghai Institute of Organic Chemistry. Chiral phosphoric acid 7 was shown (Angew. Chem. Int. Ed. 2013, 52, 13593) by Jianwei Sun at the Hong Kong University of Science and Technology to catalyze the enantioselective acetalization of diol 6 to form tetrahydrofuran 8 with high stereoselectivity. Jan Deska at the University of Cologne reported (Org. Lett. 2013, 15, 5998) the conversion of glutarate ether 9 to enantiopure tetrahy­drofuranone 10 by way of an enzymatic desymmetrization/oxonium ylide rearrange­ment sequence. Perali Ramu Sridhar at the University of Hyderabad demonstrated (Org. Lett. 2013, 15, 4474) the ring-contraction of spirocyclopropane tetrahydropyran 11 to produce tetrahydrofuran 12. Michael A. Kerr at the University of Western Ontario reported (Org. Lett. 2013, 15, 4838) that cyclopropane hemimalonate 13 underwent conver­sion to vinylbutanolide 14 in the presence of LiCl and Me₃N•HCl under microwave irradiation. Eric M. Ferreira at Colorado State University developed (J. Am. Chem. Soc. 2013, 135, 17266) the platinum-catalyzed bisheterocyclization of alkyne diol 15 to fur­nish the bisheterocycle 16. Chiral sulfur ylides such as 17, which can be synthesized easily and cheaply, were shown (J. Am. Chem. Soc. 2013, 135, 11951) by Eoghan M. McGarrigle at the University of Bristol and University College Dublin and Varinder K. Aggarwal at the University of Bristol to stereoselectively epoxidize a variety of alde­hydes, as exemplified by 18. The amine 20-catalyzed tandem heteroconjugate addition/Michael reaction of quinol 19 and cinnamaldehyde to produce bicycle 21 with very high ee was reported (Chem. Sci. 2013, 4, 2828) by Jeffrey S. Johnson at the University of North Carolina, Chapel Hill. Quinol ether 22 underwent facile photorearrangement–cycloaddition to 23 under irradiation, as reported (J. Am. Chem. Soc. 2013, 135, 17978) by John A. Porco, Jr. at Boston University and Corey R. J. Stephenson, now at the University of Michigan.


2021 ◽  
pp. 175319342110017
Author(s):  
Mamoun Krayem ◽  
Claudia Weber Lensing ◽  
Lotta Fornander

In 2016, our primary modality for radiological examination of wrist trauma, was changed from radiography to cone-beam computed tomography (CBCT). This is a retrospective survey of carpal bone fractures detected by CBCT during 6 months in 2016/2017, compared with those found on conventional radiographs during 6 months in 2013/2014. The incidence of carpal fractures was three times higher during the CBCT period (92/100,000 per year) compared with the radiography period (29/100,000 per year) and the spectrum of anatomical locations was different between the two periods, with fractures of the lunate ( n = 6), trapezium ( n = 9), trapezoid ( n = 4) and capitate ( n = 1) detected by CBCT, in contrast to no fractures of these bones diagnosed during the 6 months radiography period. We suggest a more liberal use of CBCT for examination of wrist trauma considering the benefits of being able to give patients a correct primary diagnosis, treatment and prognosis. Level of evidence: III


2017 ◽  
Vol 16 (5) ◽  
pp. 330-335 ◽  
Author(s):  
Chad Hulsopple ◽  
Jesse Deluca ◽  
Christopher Jonas

2000 ◽  
Vol 41 (2) ◽  
pp. 74-79 ◽  
Author(s):  
A. Li ◽  
D. Bennett ◽  
C. Gibbs ◽  
S. Carmichael ◽  
N. Gibson ◽  
...  

2017 ◽  
Author(s):  
Daniel Bell ◽  
Yuranga Weerakkody

Author(s):  
Gaurav P. Kalaria ◽  
Padmanabh H. Vora ◽  
Rohan R. Memon

<p class="abstract"><span lang="EN-IN">With overall prevalence between 2% to 3%, carpal bone fractures are not encountered frequently in clinical practice. Amongst these, pisiform fractures have very low incidence of &lt;0.2%, in which, more than half are associated with other carpal injuries, and sometimes ulnar styloid and ligamentous injuries. Thus, diagnosis of isolated pisiform fracture requires a very high index of suspicion. Hereby, authors report an isolated pisiform fracture in a 27 year old dentist who sustained an injury due to fall on outstretched hand. After radiographic confirmation in multiple views and CT scan, isolated-minimally displaced pisiform fracture was found. A below-elbow cast with slight palmar flexion was given for 4 weeks. He returned to normal pre-injury activities at 12 weeks.</span></p>


Sign in / Sign up

Export Citation Format

Share Document