Characterization of the Binding of Bovine Thrombin to Isolated Rat Hepatocytes

1988 ◽  
Vol 60 (03) ◽  
pp. 419-427 ◽  
Author(s):  
Britta Weyer ◽  
Torben E Petersen ◽  
Ole Sonne

SummaryIsolated rat hepatocytes possess per cell 4,500 high-affinity binding sites for thrombin with a Kd of 30-40 pM, and 2.8 × 105 low-affinity sites with a Kd of 30 nM. These binding sites are highly specific for thrombin. Half-maximal binding of 125I-labelled thrombin is achieved after 3 min at 37¸ C and 7 min at 4¸ C. The reversibly bound fraction of the ligand dissociates according to a biexponential time course with the rate constants 1—2 × 10−2 s−1 and 3—4 × 10−4 s−1. Part of the tracer remains cell-associated even after prolonged incubation, but all cell-associated radioactivity migrates as intact thrombin upon sodium dodecyl sulphate polyacrylamide gel electrophoresis. The bound thrombin is minimally endocytosed as judged by the resistance to pH 3-treatment. Cell-associated radioactivity dissociated from the cells binds just aswell in a receptor assay as tracer incubated in a conditioned medium under the same conditions, indicating the absence of a quantitatively important receptor-mediated degradation ofthe ligand.

Endocrinology ◽  
1976 ◽  
Vol 99 (4) ◽  
pp. 1033-1045 ◽  
Author(s):  
MICHAEL B. RANKE ◽  
CHARLES A. STANLEY ◽  
ALFRED TENORE ◽  
DAVID RODBARD ◽  
ALFRED M. BONGIOVANNI ◽  
...  

Hepatology ◽  
1993 ◽  
Vol 17 (4) ◽  
pp. 661-667 ◽  
Author(s):  
Kenneth B. Camacho ◽  
Carol A. Casey ◽  
Robert L. Wiegert ◽  
Michael F. Sorrell ◽  
Dean J. Tuma

1997 ◽  
Vol 152 (3) ◽  
pp. 407-412 ◽  
Author(s):  
M Montiel ◽  
M C Caro ◽  
E Jiménez

Angiotensin II (Ang II) provokes rapid internalisation of its receptor from plasma membranes in isolated rat hepatocytes. After 10 min stimulation with Ang II, plasma membrane lost about 60% of its 125I-Ang II-binding capacity. Internalisation was blocked by phenylarsine oxide (PhAsO), whereas okadaic acid, which markedly reduced the sustained phase of calcium mobilization, did not have a preventive effect on Ang II–receptor complex sequestration. These data suggest that Ang II receptor internalisation is probably independent of a phosphorylation/dephosphorylation cycle of critical serine/threonine residues in the receptor molecule. To establish a relationship between sequestration of the Ang II receptor and the physical properties of the Ang II-binding sites, 125I-Ang II–receptor complex profiles were analysed by isoelectric focusing. In plasma membrane preparations two predominant Ang II-binding sites, migrating to pI 6·8 and 6·5 were found. After exposure to Ang II, cells lost 125I-Ang II-binding capacity to the Ang II–receptor complex migrating at pI 6·8 which was prevented in PhAsO-treated cells. Pretreatment of hepatocytes with okadaic acid did not modify Ang II–receptor complex profiles, indicating that the binding sites corresponding to pI 6·5 and pI 6·8 do not represent a phosphorylated and/or non-phosphorylated form of the Ang II receptor. The results show that the Ang II–receptor complex isoform at pI 6·8 represents a functional form of the type-1 Ang II receptor. Further studies are necessary to identify the Ang II-related nature of the binding sites corresponding to pI 6·5. Journal of Endocrinology (1997) 152, 407–412


1978 ◽  
Vol 176 (1) ◽  
pp. 283-294 ◽  
Author(s):  
J G Heathcote ◽  
C H J Sear ◽  
M E Grant

1. Isolated rat lens capsules synthesized hydroxy[3H]proline-containing polypeptides when incubated with [3H]proline. 2. The collagenous polypeptides synthesized during a 2 h incubation were analyzed by both gel-filtration chromatography and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and shown to have an apparent mol.wt. of approx. 180,000. 3. No evidence was obtained for conversion of these polypeptides into a lower-molecular-weight species in experiments where capsules were labelled for 2 h and chased with non-radioactive proline for up to 22 h. However, a time-dependent incorporation of the 180,000-mol.wt. species into a larger collagenous component was observed and this could be prevented by the inclusion of beta-aminopropionitrile in the incubation medium. 4. The radioactive components synthesized by the capsules correspond to subunits of the intact lens capsule and the direct incorporation of the polypeptide of mol.wt. 180,000 into deoxycholate-insoluble basement membrane was demonstrated.


1986 ◽  
Vol 240 (2) ◽  
pp. 367-371 ◽  
Author(s):  
S Keppens ◽  
H De Wulf

Evidence has been presented for the existence in rat liver of P2-purinoceptors which are involved in the control of glycogenolysis. Isolated rat hepatocytes and purified liver plasma membranes have been used to study the binding of the ATP analogue adenosine 5′-[alpha- [35S]thio]triphosphate (ATP alpha [35S]) to these postulated P2-purinoceptors. The nucleotide analogue behaves as a full agonist for the activation of glycogen phosphorylase in isolated hepatocytes, 0.3 microM being required for half-maximal activation. Specific binding of ATP alpha [35S] to hepatocytes and plasma membranes occurs within 1 min and is essentially reversible. The analysis of the dose-dependency at equilibrium indicates the presence of binding sites with Kd of 0.23 microM with hepatocytes and Kd of 0.11 microM with plasma membranes. The relative affinities of 10 nucleotide analogues were deduced from competition experiments for ATP alpha [35S] binding to hepatocytes, and these correlated highly with their biological activity (activation of glycogen phosphorylase in hepatocytes). For all the agonists, binding occurs in the same concentration range as the biological effect. These data clearly suggest that the detected binding sites correspond to the physiological P2-purinoceptors involved in the regulation of liver glycogenolysis. The rank order of potency of some ATP analogues suggests that liver possesses the P2Y-subclass of P2-purinoceptors.


Sign in / Sign up

Export Citation Format

Share Document