scholarly journals Rapid Loss of Factor XII- and XI-Activity in Ellagic Acid Activated Normal Plasma: Role of Plasma Inhibitors and Implications for Automated Aptt-Recording

1977 ◽  
Author(s):  
J. H. Joist ◽  
J. F. Cowan ◽  
M. Khan

Rapid prolongation of the activated partial thromboplastin time (aPTT) of normal plasma upon incubation with ellagic acid containing aPTT reagents was observed. The aPTT prolongation was not due to time dependent changes in pH in the incubation mixtures or loss of activity of the labile coagulation factors VIII and V, but occurred as a result of rapid progressive inactivation of ellagic acid activated factors XII and XI. Prolongation of the aPTT and loss of contact factor activities was not observed in plasma incubated with particulate activator reagents. This finding seemed to indicate that adsorption of factors XII and XI to larger particles during the activation process may protect these factors from inactivation by naturally occurring plasma inhibitors. Evidence is presented which supports previous observations that Ci-inhibitor, α1-antitrypsin and antithrombin III (in the presence of heparin contribute to factor XIIa- and XIa-inactivation in ellagic acid activated plasma and that plasma albumin may compete with factor XII for ellagic acid binding. The findings indicate that ellagic acid containing aPTT reagents have unfavorable properties which seriously limit their usefulness in the clinical laboratory, particularly in respect to recording of the aPTT with certain fully automated clot timers.

Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 932-939 ◽  
Author(s):  
JL Brash ◽  
CF Scott ◽  
P ten Hove ◽  
P Wojciechowski ◽  
RW Colman

The transient detection of fibrinogen on surfaces has been described (Vroman effect) and high-mol-wt kininogen (HK) has been shown to play a role in this reaction. In this study, we attempted to identify the form of HK responsible for preventing detection of the fibrinogen initially adsorbed from plasma to various artificial surfaces and to determine if other plasma components were involved. We compared 125I-fibrinogen adsorption in the presence of normal plasma to plasma deficient in specific proteins. On all surfaces tested, we found that fibrinogen was displaced from the surface. The extent of displacement was greatly reduced, however, but not eliminated in HK-deficient plasma. Factor XII- deficient plasma also showed reduced fibrinogen displacement. These data indicate that HK can actually displace fibrinogen; however, factor XII, or a factor XII-mediated reaction also appears to be necessary for this displacement to occur. Furthermore, when normal plasma was first subjected to extensive contact activation by dextran sulfate, during which the HK was extensively degraded to components smaller than the light chain (as assessed by Western blotting), we observed greatly reduced displacement of fibrinogen. Extensive contact activation of Factor XI-deficient plasma failed to show low-mol-wt derivatives, however, and displacement of fibrinogen was similar to normal plasma that had not undergone extensive activation. These data indicate that HKa (active cofactor produced during contact activation by factor XIIa or kallikrein) is primarily responsible for displacing fibrinogen, and that HKi (inactive cofactor generated by factor XIa) cannot displace fibrinogen. The fibrinogen from all plasma samples looked similar by Western blot analysis, suggesting that fibrinogenolysis was not a component of the Vroman effect. In addition, experiments performed with plasma prechromatographed on lysine agarose showed that a lysine- agarose adsorbable protein may be minimally involved in fibrinogen desorption and a synergism may exist between HK and that protein.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 932-939 ◽  
Author(s):  
JL Brash ◽  
CF Scott ◽  
P ten Hove ◽  
P Wojciechowski ◽  
RW Colman

Abstract The transient detection of fibrinogen on surfaces has been described (Vroman effect) and high-mol-wt kininogen (HK) has been shown to play a role in this reaction. In this study, we attempted to identify the form of HK responsible for preventing detection of the fibrinogen initially adsorbed from plasma to various artificial surfaces and to determine if other plasma components were involved. We compared 125I-fibrinogen adsorption in the presence of normal plasma to plasma deficient in specific proteins. On all surfaces tested, we found that fibrinogen was displaced from the surface. The extent of displacement was greatly reduced, however, but not eliminated in HK-deficient plasma. Factor XII- deficient plasma also showed reduced fibrinogen displacement. These data indicate that HK can actually displace fibrinogen; however, factor XII, or a factor XII-mediated reaction also appears to be necessary for this displacement to occur. Furthermore, when normal plasma was first subjected to extensive contact activation by dextran sulfate, during which the HK was extensively degraded to components smaller than the light chain (as assessed by Western blotting), we observed greatly reduced displacement of fibrinogen. Extensive contact activation of Factor XI-deficient plasma failed to show low-mol-wt derivatives, however, and displacement of fibrinogen was similar to normal plasma that had not undergone extensive activation. These data indicate that HKa (active cofactor produced during contact activation by factor XIIa or kallikrein) is primarily responsible for displacing fibrinogen, and that HKi (inactive cofactor generated by factor XIa) cannot displace fibrinogen. The fibrinogen from all plasma samples looked similar by Western blot analysis, suggesting that fibrinogenolysis was not a component of the Vroman effect. In addition, experiments performed with plasma prechromatographed on lysine agarose showed that a lysine- agarose adsorbable protein may be minimally involved in fibrinogen desorption and a synergism may exist between HK and that protein.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1053-1062
Author(s):  
D Veloso ◽  
LD Silver ◽  
S Hahn ◽  
RW Colman

Of five IgGI/k murine monoclonal anti-human prekallikrein antibodies produced (MAbs), MAb 13G11 was selected for studying interaction of prekallikrein with factor XII and high-mol-wt kininogen (HMWK) during activation on a surface. Immunoblots from sodium dodecyl sulfate (SDS) gels showed that this MAb recognizes two variants (88 kd and 85 kd) of prekallikrein and kallikrein both in purified proteins and normal plasma. Under reducing conditions, kallikrein exhibits the epitope on the heavy chain but not on the light chains. Preincubation of MAb 13G11 with prekallikrein (added to prekallikrein-deficient plasma) or with normal plasma inhibited surface activation of prekallikrein 60% to 80%, as judged by amidolytic and coagulant assays. In normal plasma, inhibition by the Fab fragments was 87% of that with the entire MAb. Inhibition was not by competition between the MAb and HMWK, since neither binding of 13G11 to prekallikrein (coated on microtiter plates) was inhibited by an excess of HMWK, nor was hydrolysis of HMWK by kallikrein inhibited by 13G11. Using purified proteins in a system mimicking contact activation, inhibition by 13G11 of prekallikrein activation by factor XIIa, HMWK, and kaolin present was approximately 80%. Decreased inhibition (55% to 25%) occurred without HMWK or when kallikrein was used instead of prekallikrein. Kallikrein activity was not inhibited by 13G11 Fab fragments. These results indicate that the effect of 13G11 in plasma was neither dissociation of prekallikrein- HMWK complex nor a direct effect on kallikrein activity. Similar to the results in plasma, activation of prekallikrein, HMWK present, by factor XIIa bound to kaolin, was inhibited approximately 70% by 13G11. The results suggest a previously unrecognized site on the prekallikrein (heavy chain) required for its interaction with factor XIIa, either shared with the 13G11 epitope or located in very close proximity. The inhibition of kallikrein by intact 13G11 indicates that its binding site on the heavy chain is sterically related to the active site (light chain).


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1053-1062 ◽  
Author(s):  
D Veloso ◽  
LD Silver ◽  
S Hahn ◽  
RW Colman

Abstract Of five IgGI/k murine monoclonal anti-human prekallikrein antibodies produced (MAbs), MAb 13G11 was selected for studying interaction of prekallikrein with factor XII and high-mol-wt kininogen (HMWK) during activation on a surface. Immunoblots from sodium dodecyl sulfate (SDS) gels showed that this MAb recognizes two variants (88 kd and 85 kd) of prekallikrein and kallikrein both in purified proteins and normal plasma. Under reducing conditions, kallikrein exhibits the epitope on the heavy chain but not on the light chains. Preincubation of MAb 13G11 with prekallikrein (added to prekallikrein-deficient plasma) or with normal plasma inhibited surface activation of prekallikrein 60% to 80%, as judged by amidolytic and coagulant assays. In normal plasma, inhibition by the Fab fragments was 87% of that with the entire MAb. Inhibition was not by competition between the MAb and HMWK, since neither binding of 13G11 to prekallikrein (coated on microtiter plates) was inhibited by an excess of HMWK, nor was hydrolysis of HMWK by kallikrein inhibited by 13G11. Using purified proteins in a system mimicking contact activation, inhibition by 13G11 of prekallikrein activation by factor XIIa, HMWK, and kaolin present was approximately 80%. Decreased inhibition (55% to 25%) occurred without HMWK or when kallikrein was used instead of prekallikrein. Kallikrein activity was not inhibited by 13G11 Fab fragments. These results indicate that the effect of 13G11 in plasma was neither dissociation of prekallikrein- HMWK complex nor a direct effect on kallikrein activity. Similar to the results in plasma, activation of prekallikrein, HMWK present, by factor XIIa bound to kaolin, was inhibited approximately 70% by 13G11. The results suggest a previously unrecognized site on the prekallikrein (heavy chain) required for its interaction with factor XIIa, either shared with the 13G11 epitope or located in very close proximity. The inhibition of kallikrein by intact 13G11 indicates that its binding site on the heavy chain is sterically related to the active site (light chain).


Blood ◽  
2011 ◽  
Vol 117 (15) ◽  
pp. 4134-4141 ◽  
Author(s):  
Jessica L. MacQuarrie ◽  
Alan R. Stafford ◽  
Jonathan W. Yau ◽  
Beverly A. Leslie ◽  
Trang T. Vu ◽  
...  

Abstract Histidine-rich glycoprotein (HRG) circulates in plasma at a concentration of 2μM and binds plasminogen, fibrinogen, and thrombospondin. Despite these interactions, the physiologic role of HRG is unknown. Previous studies have shown that mice and humans deficient in HRG have shortened plasma clotting times. To better understand this phenomenon, we examined the effect of HRG on clotting tests. HRG prolongs the activated partial thromboplastin time in a concentration-dependent fashion but has no effect on tissue factor–induced clotting, localizing its effect to the contact pathway. Plasma immunodepleted of HRG exhibits a shortened activated partial thromboplastin time that is restored to baseline with HRG replenishment. To explore how HRG affects the contact pathway, we examined its binding to factors XII, XIIa, XI, and XIa. HRG binds factor XIIa with high affinity, an interaction that is enhanced in the presence of Zn2+, but does not bind factors XII, XI, or XIa. In addition, HRG inhibits autoactivation of factor XII and factor XIIa–mediated activation of factor XI. These results suggest that, by binding to factor XIIa, HRG modulates the intrinsic pathway of coagulation, particularly in the vicinity of a thrombus where platelet release of HRG and Zn2+ will promote this interaction.


1987 ◽  
Author(s):  
J H Nuijens ◽  
C C M Huijbregets ◽  
L G Thijs ◽  
C E Hack

Levels of factor XIIa- and kallikrein-Cl inhibitor (Cl-Inh) complexes in plasma reflect activation of the contact system in vivo. Here, we report the development of radioimmunoassays (RIAs) for these complexes using a monoclonal antibody (mAb K0K12) that reacts with a neodeterminant exposed on Cl-Inh after interaction with proteases. mAb K0K12 was obtained by a fusion experiment with spleen cells of a mouse hyperimmunized with Cl-Inh complexes.Experiments with purified Cl-Inh incubated with either Cls or elastase revealed that the determinant for mAb KOK12 is exposed on complexed as well as proteolytically inactivated (modified) Cl-Inh.Radioimmunoassays (RIAs) for the detection of factor Xlla-Cl-Inh and kallikrein-Cl-Inh complexes were performed as follows: mAb K0K12 was coupled to Sepharose and incubated with the sample to be tested. Binding of Cl-Inh complexes was detected by a subsequent incubation with 125I-antibodies against factor XII or (pre)kallikrein.With these RIAs, activation of 0.1% of factor XII or prekal-likrein in plasma is easily detected.Optimal conditions for blood sampling and processing were established, i.e. conditions that prevented any in vitro activation of factor XII and prekallikrein. Levels of factor XIIa-Cl-Inh and kallikrein-Cl-Inh complexes in plasma samples from normal donors were less than 0.1 U/ml (100 U/ml is the maximal amount of Cl-Inh complexes generated in pooled plasma by DXS). Considerably higher, and fluctuating levels were observed in patients with diseases such as septicaemia. These highly sensitive RIAs will facilitate studies concerning the role of the contact system in human pathophysiology.


Blood ◽  
1982 ◽  
Vol 59 (6) ◽  
pp. 1225-1233 ◽  
Author(s):  
F van der Graaf ◽  
FJ Keus ◽  
RA Vlooswijk ◽  
BN Bouma

Abstract Incubation of normal human plasma with dextran sulfate for 7 min at 4 degrees C generates kallikrein amidolytic activity. No kallikrein activity is generated in factor XII or prekallikrein-deficient plasma and only small amounts (8%) in high molecular weight (HMW) kininogen- deficient plasma. Addition of specific antisera directed against prekallikrein or HMW kininogen to normal plasma blocked the generation of kallikrein activity by dextran sulfate. Thus, factor XII, prekallikrein, and HMW kininogen are essential components for optimal activation of prekallikrein. The role of limited proteolysis in the activation of prekallikrein induced by dextran sulfate was studied by adding 125I-prekallikrein to plasma. The generation of kallikrein activity paralleled the proteolytic cleavage of prekallikrein as judged on SDS gels in the presence of reducing agents. The same cleavage fragments were observed as obtained by activation of purified prekallikrein by beta-factor-XIIa. Addition of 131I-HMW kininogen and 125I-factor XII or 131I-HMW kininogen and 125I-prekallikrein to normal plasma followed by activation with dextran sulfate and analysis on SDS gels indicated that the observed cleavage of prekallikrein and HMW kininogen is fast compared to the observed cleavage of factor XII, which is much slower and less extensive. During the first minutes of incubation of normal plasma with dextran sulfate, mainly alpha-factor- XIIa is formed. During prolonged incubation, beta-factor-XIIa is also formed.


1987 ◽  
Author(s):  
D Veloso ◽  
M Shapira ◽  
F Kueppers ◽  
R W Colman

Abnormal prekallikrein (PK) levels in plasma can be due to decreased biosynthesis or increased activation either by surface-activated factor XIIa (e.g., in septicemia) or by other proteases (e.g., in pancreatites). To study the products of activation of PK in plasma, intact normal plasma and plasma exposed to either activating surfaces or factor XII fragment, was immunoblotted from SDS-gels. MAb 13G11 which recognizes purified PK, kallikrein (KAL) and the complexes of KAL with Cl-inhibitor (Cl-Inh) and α2macroglobulin (α2M) formed from purified proteins detected a doubLet (88- and 85-kDa) which comigrated with PK and KAL but was not visible in PK-deficient plasma. Transfer of either PK in normal plasma (25-125 ng) or KAL (50-300 ng) added to PK-deficient plasma was proportional to the amount of protein applied to the SDS-gels. Activation of plasma decreased the intensity of the PK bands with the formation of new bands with molecular weights similar to those of KAL-Cl-Inh and KAL-α2M. Identity was confirmed by MAb 4C3 (reacts with KAL-Cl-In, not with KAL) and a polyclonal antibody to α2M. Increase of incubation temperature from 24 to 37 increased KAL-Cl-Inh and decreased KAL-α2M. Addition of an excess of a2M before surface activation caused an increase of KAL-α2M complex and a decrease of KAL-Cl-Inh. Addition of an excess of Cl-Inh increased KAL-Cl-Inh and decreased KAL-α2M. In addition, activation of Cl-Inh-deficient plasma showed lower KAL-Cl-Inh and higher KAL-a2M than those when normal plasma was activated. When the deficient plasma was treated with CH3NH2 to inactivate α2M, an increase at KAL position was observed since no inhibitors were active. These studies indicate that 13G11 will be useful to detect changes in the distribution of PK, KAL, KAL-Cl-Inh and KAL-α2M associated with abnormal activation of PK and/or abnormal availability of inhibitors in disease.


Author(s):  
D H Osmond ◽  
S R Tatemichi ◽  
E A Wilczynski ◽  
A D Purdon

We have demonstrated that human plasma “prorenin”, an inactive precursor of the blood pressure regulating enzyme renin, can be activated by cold, e.g. -4 to +4°C for 1-30 days (Can. J. Physiol. Pharmacol. 51:705, 1973). Several workers have reported cold activation of the coagulation system. Suspecting a link between these two cold- activated enzyme systems, we established that in factor XII deficient plasma, the rate of cold activation of prorenin is halved (Lancet i, 1313, 1978). Trypsinization of plasma can mimic within 1 minute the effect of prolonged cold (Circ. Res. Suppl . 1, 41:171, 1977), and can overcome specific coagulation factor deficiencies in varying degrees. FXII, VII, V, and especially FX deficient plasmas, all have subnormal basal active renin levels, implying an impaired state of prorenin conversion in vivo. FXII deficientplasma activates least by cold, suggesting special importance of FXII for operation of cold activation. All the plasmas activate better with 0.5 mg trypsin/ml plasma than with cold, except FX, suggesting that it especially mediates tryptic activation. Increasing the trypsin concentration corrects for factor deficiencies in varying degrees, implying some non-specificity and interchangeability of factor requirements for prorenin activation. Our data point to a hierarchy of factor importance, and to a “cascade7#x201D; of prorenin activation, by which plasma renin content can be rapidly increased. Thus, plasma renin activity is a function of renal release of renin, plus renin formation from renal (and possibly extrarenal) prorenin by an activation process involving the coagulation system.


1984 ◽  
Vol 73 (6) ◽  
pp. 1542-1549 ◽  
Author(s):  
A de Agostini ◽  
H R Lijnen ◽  
R A Pixley ◽  
R W Colman ◽  
M Schapira

Sign in / Sign up

Export Citation Format

Share Document