scholarly journals Efficiency of Amorphous Calcium Phosphate–Containing Orthodontic Composite and Resin Modified Glass Ionomer on Demineralization Evaluated By a New Laser Fluorescence Device

2009 ◽  
Vol 03 (02) ◽  
pp. 127-134 ◽  
Author(s):  
Tancan Uysal ◽  
Mihri Amasyali ◽  
Alp Erdin Koyuturk ◽  
Deniz Sagdic

ABSTRACTObjectives: The aim of this in vitro study was to compare the efficacy of Amorphous Calcium Phosphate (ACP)-containing orthodontic composite and resin-modified glass ionomer cement (RMGIC) on enamel demineralization adjacent to orthodontic brackets evaluated by a new laser fluorescence device.Methods: Sixty extracted maxillary premolars were used in the present study. Twenty orthodontic brackets were bonded with ACP-containing orthodontic adhesive (Aegis-Ortho), 20 were bonded with RMGIC (Fuji Ortho LC) ad20 were bonded with Transbond XT composite as the control. All samples were then cycled for 21 days through a daily procedure of demineralization for 6 hours and remineralization for 17 hours. After this procedure, demineralization evaluations were undertaken by a pen-type laser fluorescence device (DIAGNO-dent Pen). Analysis ofvariance (ANOVA) and Tukey test was used for statistical evaluation, at P<.05 level.Results: According to ANOVA, significant demineralization variations (ΔD) were determined among groups (F=6.650; P<.01). The ACP-containing composite showed the lowest (mean: 8.98±2.38) and the control composite showed the highest (mean:12.15±3.83) ΔD, during 21 days demineralization process (P<.01). Significant difference was also observed between the ΔD scores of the RMGIC (mean: 9.24±2.73) and control (P<.05).No significant differences was found in preventive effects of ACP-containing composite and RMGIC (P<.05) against demineralization.Conclusions: The use of both ACP-containing orthodontic composite and RMGIC should be recommended for any at-risk orthodontic patient to provide preventive actions and potentially remineralize subclinical enamel demineralization. (Eur J Dent 2009;3:127-134)

2018 ◽  
Vol 29 (2) ◽  
pp. 128-132 ◽  
Author(s):  
Gabriela Cristina Santin ◽  
Alexandra Mussolino de Queiroz ◽  
Regina Guenka Palma-Dibb ◽  
Harley Francisco de Oliveira ◽  
Paulo Nelson Filho ◽  
...  

Abstract Patients undergoing radiotherapy treatment present more susceptibility to dental caries and the use of an orthodontic device increases this risk factor due to biofilm accumulation around the brackets. The objective of this study was to evaluate the shear bond strength to irradiated permanent teeth of orthodontic brackets bonded with conventional glass ionomer cement and resin-modified glass ionomer cement due to the fluoride release capacity of these materials. Ninety prepared human premolars were divided into 6 groups (n=15), according to the bonding material and use or not of radiation: CR: Transbond XT composite resin; RMGIC: Fuji Ortho LC conventional glass ionomer cement; GIC: Ketac Cem Easymix resin-modified glass ionomer cement. The groups were irradiated (I) or non-irradiated (NI) prior to bracket bonding. The specimens were subjected to a fractioned radiation dose of 2 Gy over 5 consecutive days for 6 weeks. After the radiotherapy, the brackets were bonded on the specimens with Transbond XT, Fuji Ortho LC and Ketac Cem Easymix. After 24 h, the specimens were subjected to shear bond strength test. The image of enamel surface (classified by Adhesive Remnant Index - ARI) was also evaluated and its frequency was checked among groups/subgroups. The shear bond strength variable was evaluated with ANOVA and Tukey’s post-hoc test. GIC group showed the lowest adhesion values among the groups (p<0.05). There was no statistically significant difference among non-irradiated and irradiated groups (p>0.05). As for the ARI, the CR-I group showed the highest material retention on enamel surface among the irradiated groups. RMGIC group showed the highest values for shear bond strength and presented ARI acceptable for clinical practices.


2020 ◽  
Vol 36 (3) ◽  
Author(s):  
Tabinda Nawaz Khan ◽  
Farhan Raza Khan ◽  
Syed Yawar Ali Abidi

Objective: To compare the microleakage around resin modified glass ionomer cement (RMGIC) based sealants and flowable resin based sealants placed with or without ameloplasty in extracted human teeth. Methods: This in-vitro experimental study was conducted at the Operative Dentistry Department, Dow University of Health Sciences, Karachi, Pakistan from June 2017 to December 2018. Sixty extracted human molars and premolars were assigned to four groups (n=15) each, according to the type of fissure sealant (flowable resin based sealant or resin modified glass ionomer based sealant) used and either placed with or without ameloplasty. Specimens were thermocycled and then immersed in 1% methylene blue for 24 hours. Specimens were then sectioned and examined using stereo-microscope (50X) for microleakage that was scored on an ordinal scale. Mann-Whitney U test and Ordinal regression were applied. Level of significance kept at 0.05. Results: There was a statistically significant difference (p-value <0.001) between the two sealant types for the microleakage scores. Sealants placed with ameloplasty demonstrated significantly higher microleakage values (p-value <0.001). Conclusion: Microleakage was found to be more pronounced in RMGIC based sealants compared to the resin based sealants. Ameloplasty resulted in higher leakage around the sealants irrespective of the chemistry of material. doi: https://doi.org/10.12669/pjms.36.3.1268 How to cite this:Khan TN, Khan FR, Abidi SYA. Ameloplasty is counterproductive in reducing microleakage around Resin Modified Glass Ionomer and Resin based fissure sealants. Pak J Med Sci. 2020;36(3):---------. doi: https://doi.org/10.12669/pjms.36.3.1268 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Author(s):  
Anjna Sharma ◽  
Pankaj Mishra

ABSTRACT Aim To compare the compressive strengths of composite resins and resin-modified glass ionomer cements (RMGICs) at different times. Materials and methods A total of 36 samples were prepared, 12 samples of each group, composite resins Filtek Z 250, Filtek Z 350, and resin-modified glass ionomer cement. Compressive strengths of specimens were measured after 1, 24 hours, and 7 days. Test was carried out on a “Universal Testing Machine” with cross-head speed of 5 mm/min. Results There was a significant difference between all the three restorative materials. Analysis of variance showed that mean compressive strengths of Z 250 after 1, 24 hours were higher than Z 350 and RMGIC (p < 0.05). The mean compressive strengths were reduced after 7 days in all the three groups, but after 7 days, the values of Z 250 when compared with the Z 350 and RMGIC were higher. Conclusion The study demonstrated that compressive strengths of hybrid composite resins (Z 250) were significantly higher than that of nanocomposites (Z 350) and RMGIC. How to cite this article Sharma A, Mishra P, Mishra SK. Time-dependent Variation in Compressive Strengths of Three Posterior Esthetic Restorative Materials: An in vitro Study. Int J Prosthodont Restor Dent 2016;6(3):63-65.


2018 ◽  
Vol 69 (11) ◽  
pp. 3013-3017
Author(s):  
Roxana Oancea ◽  
Anca Mesaros ◽  
Octavia Iulia Balean ◽  
Angela Codruta Podariu

The aim of this in vitro study was to test the effectiveness of applying the fluoride varnish on bracketed teeth with 2 types of bonding agent. 10 patients aged 12-18 (mean age 13.06 +/- 1.72 years) were scheduled to have the four fist premolar teeth extracted. The teeth were dived in 4 groups: 2 experimental and 2 controls. The teeth were cut in half so 80 surfaces were analyzed. The brackets were collated with Transbond XT and Fuji Ortho Lc. For each of the materials that have been used there was a test and a control group. The tests groups received one single application of Duraphat. The content in fluoride was measured by spectrophotometer. The mean values of fluoride indicated an important increase in the fluoride content after using resin modified glass ionomer cement and fluoride varnish. Statistically significant differences were determined between each of the control and treatment group when both materials have been used, after 10 days and one month application of the varnish. The study pointed out that the fluoride varnish combined with resin modified glass ionomer cement is more efficient than the classical resin composite in preventing demineralization around orthodontic brackets.


2020 ◽  
Vol 9 (4) ◽  
pp. 250-258
Author(s):  
Maryam Shirazi ◽  
◽  
Mahsa Sadeghi ◽  

Introduction: There is a high prevalence of enamel caries around brackets due to the young age of the majority of orthodontic patients, and to the difficulty of plaque removal in presence of orthodontic appliances. Recently, protective agents such as bioactive glasses (BGs) were introduced to enhance remineralization and prevent demineralization of tooth structures. This study aimed to assess the shear bond strength (SBS) of resin-modified glass ionomer cement (RMGIC) with addition of 45S5 BG to enhance its remineralizing potential using two conventional methods. Material and methods: This in-vitro experimental study evaluated three groups (n=20) of orthodontic brackets bonded to enamel using Transbond XT (group 1), light-cure RMGIC (group 2) and RMGIC with BG added (group 3). Samples underwent 7000 thermal cycles and their SBS was measured. The adhesive remnant index (ARI) score was also determined. Quantitative data were analyzed using one-way ANOVA while qualitative data were analyzed using a chi-square test. Discussion: The results showed no significant difference in SBS between study groups, however the ARI scores were significantly different among the groups. The RMGIC group showed the highest ARI while RMGIC doped with BG showed the lowest ARI score. Conclusion: Addition of 30% w/v 45S5 BG to RMGIC does not cause a significant change in SBS of orthodontic brackets bonded to enamel, while resulting in less amount of luting agent remnants on the enamel surface after debonding.


Sign in / Sign up

Export Citation Format

Share Document